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1

CHAPTER 1 INTRODUCTION

1.1 Background and Motivation

In our current society, mobile real-time communication is becoming increasingly vi-

tal, especially in emergency situations, such as car accidents, life-threatening medical

situations, hurricanes or earthquakes. The European Union (EU) has been committed

to deploying a pan-European in-vehicle emergency call (eCall) system to enhance road

safety. The eCall system transmits real-time emergency data via an in-band modem of

the cellular voice channel. The in-band modem can also be used for real-time unmanned

aerial system (UAS) tracking, command and control. Recently the UAS industry has been

experiencing steady growth. UASs have been used in numerous applications including

infrastructure inspection, wildfire management, disaster monitoring, mapping, wind esti-

mation, filmography, traffic control, and search, and rescue and medical aid [1, 2]. The

Federal Aviation Administration (FAA) requires a radio link between the UAS and the op-

erator for real-time UAS ID tracking, command and control [3].

The EU delegated the Third Generation Partnership Project (3GPP) to standardize

the technical specifications of the eCall data transmission. After careful study, the 3GPP

group selected the in-band modem solution operating through the voice channel of 2G/3G

cellular network and public switched telephone network (PSTN) for the emergency data

transmission [4]. This is the best choice and the right technical approach to minimize

the delay of emergency data transmission. The digital cellular voice channel is circuit-

switched, and the signal transmission is real-time. The capacity of the digital cellular voice

channel is sufficient for emergency data communication [4]. In 2G/3G cellular networks,

the voice channel is of higher priority than data channels. Additionally, the voice channel
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coverage is much wider than the coverage of data channels.

In case of a traffic accident, even if the driver and the passengers are unconscious

and unable to make a call, the in-vehicle system (IVS) can autonomously detect the ac-

cident, dial the European unified emergency call number 112, and report the location of

the vehicle, through transmitting the emergency data to the Public Safety Answering Point

(PSAP) [5]. To ensure timely, accurate and reliable emergency data transmission, on April

28, 2015, an eCall regulation was approved by the European Parliament to finalize the leg-

islative process for the EU eCall deployment. The regulation requires all new passenger

cars and light vans in the EU market to be provided with an eCall device by March 31,

2018 [6].

Road traffic accidents bring severe social and economic losses not only to EU, but

also cause enormous losses in other countries across the globe. It is commonly accepted

that comparing road fatality rates among different countries can provide good indication

about safety levels in such countries. In the 2015 World Health Organization (WHO) re-

port Global Status Report on Road Safety [7], around 26,000 individuals, in the EU, lost

their lives in traffic accidents, in 2013 only. The traffic fatality rate was about 52 per million

inhabitants, which was the lowest fatality rate in the world at the time. The United States

reported 34,064 traffic fatalities on the road, during the same year, resulting in approxi-

mately 106 deaths per million people; i.e. nearly twice that of the EU. WHO estimated that

the number of road deaths, in China, was about 261,000 in 2013, yielding a rate of 188

deaths per million people. In 2013, the world’s average traffic fatality rate was 174 per

million inhabitants. The total number of traffic fatalities reached 1.25 million in the world’s

180 countries and regions; most of which were in low-income developing countries. The
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data also indicated that casualties due to road traffic accidents have an enormous impact

on the global economy. Traffic accident casualties cause substantial social and economic

losses at up to 3% of the global Gross Domestic Product (GDP) losses. Successful de-

ployment of the eCall system would benefit the EU. Moreover, establishing eCall as an

international standard would also have a significant global impact [8].

The EU eCall system can be activated automatically or manually to call an emergency

center and route rescue services swiftly to an accident site [4, 9]. In the event of an

accident, an IVS autonomously initiates an emergency call to the appropriate PSAP via

activation of in-vehicle sensors. Additionally, the passengers of the vehicle can also press

an emergency button to make the call. Once a voice connection is established, the IVS

transmits a minimum set of data (MSD), including the vehicle identification number (VIN),

the time, vehicle location, driving directions, and other relevant information to the PSAP.

After successfully receiving the data, a PSAP operator begins speaking with passengers

in the vehicle. The PSAP operator organizes the necessary rescue services and oversees

the entire process, until it is concluded. The foreseen advantage is that the PSAP obtains

the precise accident location and vehicle type rapidly; thus enabling the rescue service to

reach the accident’s victims in a timely manner, and ultimately, save more lives in Europe.

The eCall system is foreseen to cut rescue time by 60% in urban areas and 50% in rural

parts of the EU [10, 11]. The quicker response would save thousands of save thousands

of lives and decrease the severity of injuries. Clearly, the eCall system has great social

impact, regarding reducing human suffering, in addition to the economic impact through

reducing costs of health care and other related costs [12, 13].
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1.2 Literature Review

Car manufacturers and governments have always valued the use of in-vehicle emer-

gency call systems to enhance road safety. In 1996, General Motors (GM) launched the

OnStar mobile emergency communication services in the USA employing in-band mo-

dem to transmit emergency data from vehicle to the call center. In 1997, BMW started

to offer emergency communication services using the short message service (SMS) for

emergency data transmission. Other automotive manufacturers have followed the prac-

tice, and the automotive telematics has become popular worldwide. In 2002, the Euro-

pean Commission (EC) established the eSafety initiative, which recommended the use

of advanced information and communication technology to implement intelligent vehicle

safety systems to improve road safety [14]. In 2004, a memorandum of understanding

(MoU) was issued by the eCall Driving Group to provide the definition, framework, and

feasibility of in-vehicle eCall systems [15]. In 2005, the EC commissioned the European

Telecommunications Standards Institute (ETSI) Mobile Standards Group (MSG) to begin

the standardization for the eCall system.

In 2006, the global system of mobile telecommunications (GSM) Europe conducted

a comprehensive assessment of MSD transmission solutions including Short Message

Service, User to User Signaling, Unstructured Supplementary Service Data, GSM Circuit-

Switched Data, Dual Tone Multi-Frequency (DTMF), and In-band Modem technologies.

GSM Europe concluded that the in-band modem is the only suitable solution. The cellu-

lar voice channel has higher priority for acquiring channels, is more reliable and provides

wider coverage and faster connection establishment than cellular data channels. These

properties can be exploited in low bit-rate, high priority emergency applications that require
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data to be transmitted immediately. Moreover, this solution does not require modifying the

cellular or PSTN networks. The 3GPP began standardizing an in-band modem specifica-

tion for the eCall system with the delegation of the European Commission and ETSI [16].

The 3GPP standardization organization began to select eCall in-bandmodems in 2007.

In the first phase, the 3GPP evaluated cell phone text telephony modem (CTM) [17] ac-

cording to the eCall service requirements. The CTM did not meet all the requirements of

the eCall system. In the second phase, several in-band modem solutions were then tested

in the laboratory. Based on those testes, the official selection was made in August, 2008.

It was established that Qualcomm’s solution met the eCall requirements per these labora-

tory tests. With the strong support of the EU government, the first international standard

in telematics was released by the 3GPP standard group as TS 26.267, 26.268, 26.269

in 2009. The 3GPP standardization group completed the appropriate verification, charac-

terization, and modem specifications. From March 2009 to June 2018, the 3GPP group

updated the technical specifications of the eCall in-band modem and released multiple

versions from Version 2.0 to Version 15.0. As previously mentioned, the European Com-

mission adopted proposals to enforce mandatory IVS installment in all new passenger

cars and light commercial vehicles models, by March 31, 2018 [18].

A testbed was designed and built by our team to study the performance of the EU eCall

system [19]. Extensive experimental work has been performed using the testbed. It was

found that deep fading still exists in the voice channels of the GSM and the CDMA2000

system after power control. Such fading is not negligible. For emergency data transmis-

sion, the fading can cause severe performance degradation in signal detection, demod-

ulation, and decoding. It must be measured carefully and accounted for in the system
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performance evaluation, especially for emergency data transmission through digital cellu-

lar voice channel for systems like the 3GPP TS 26.267

In [20], the authors discussed the eCall system requirements and the selection pro-

cess of the in-band modem solution by the 3GPP. The in-band modem solution proposed

by Qualcomm was selected after comparing three proposals through PC-to-PC computer

simulations. However, many realistic factors in the digital cellular network were not con-

sidered in the selection process, such as echo canceller, noise canceler, handover and

the effects of transcoding between codecs, implemented in digital cellular networks and

PSTN.

The authors of [21] obtained the bit error rate (BER) and signal-to-distortion power

ratio (SDR) for the EU eCall modem through a GSM adaptive multi-rate (AMR) vocoder

and additive white Gaussian noise (AWGN) channel. The uncoded BER was determined

by simulation using C code of various GSM vocoders. The authors also attempted to find

an optimal receiver filter for the PSAP demodulator. It was shown that the AMR vocoder

could cause significant SNR degradation to the 3GPP in-band modem output signal. For

example, when the AMR vocoder rate is 4.75 kbps, the SDR at the vocoder output is 4 dB

for the robust modulationmode or 3.9 dB for the fast modulation, causing the demodulation

error rate to be 0.041 or 0.14, respectively.

Some field test results were reported in Finland [22]. The work also reported that

the success rate of the MSD transmission varied significantly at different test sites. In

effect, temporal variations of signal power have effects on the success rate of MSD trans-

mission. The success rate of the MSD varied from 71% to 100%, among the countries

that attended the Harmonized eCall European Pilot (HeERO) project. The report pointed
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out that there is a great potential to increase the MSD success rate and decrease the

MSD transmission delay, in practical operating conditions. In [23], the authors applied the

Gilbert-Elliott model to the voice channel and obtained the capacity bounds for in-band

modem data transmission through the voice channel. They also proposed an improved

detection scheme invoking Weibull and Chi-square distributions.

In other efforts, authors evaluated the multiple frequency-shift keying (M-FSK) modu-

lation scheme on transmitted data over the cellular voice channels [24]. A desktop com-

puter connected to a mobile phone was used to transmit the M-FSK modulation signal

while another desktop computer connected to another mobile phone received the modu-

lated signal and demodulated the information. The test model featured public land mobile

network (PLMN)-PLMN architecture. Optimal modulation parameters and data transfer

rates were determined in a series of experiments, using this model. Data transmission

was optimal using a 16-FSK modulation scheme and corresponding transmission speed

was between 80 to 250 bits/s, and the bit error rate without error coding was less than

10−2. This testbed model differs distinctly from the eCall PLMN-PSTN architecture. The

EU eCall data rate is 1500 bits/s or 750 bits/s, which is faster than the 16-FSK modulation

used in the test.

An autoregressive model of speech production was applied to design the modulation

and demodulation scheme for data transmission in [25]. The author analyzed speech sig-

nal characteristics based on the autoregressive modeling principle. A speech-like modula-

tion signal was generated and transmitted through the voice channel of the GSM system.

The autoregressive model was also used to analyze the demodulator which demodulated

the incoming modulation signal. The results showed that the performance of the proposed
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modulation scheme was better than that of the FSKmodulation scheme in general, but the

performance of the FSKmodulation showed superior performance, when the transmission

rate was less than 250 bits/s.

The EU eCall emergency data is, ideally, transferred from IVS to PSAP via the GSM

voice channel within four seconds to ensure that the driver receives timely assistance [26].

The technical specifications under Qualcomm’s modem solution allow for MSD to be trans-

mitted within four seconds successfully in some test cases. However, these tests were

performed in a laboratory environment, and thus do not adequately reflect real-world chan-

nel characteristics. The test scenario included running IVS and PSAP on two computers

connected via Ethernet to evaluate modem performance under the influence of various

codecs, e.g., GSM full rate (GSM-FR) vocoder and AMR vocoder for voice coding in GSM

and UMTS networks. The impacts of echo cancellers or noise cancellers, switching, pos-

sible execution errors, and transcoding effects between codecs using mobile versus fixed

telephone networks were not measured in the test. Although the delay is extended to 20

seconds under the newest standards, according to the NXP Semiconductors road trial and

HeURO road test results, current methods do not guarantee a 20-second-maximum delay

[27].

Multipath propagation fading between cellphone antenna and base transceiver station

(BTS) radio receiver without power control was studied in [28, 29]. Anti-fading techniques

have been employed to decrease the impact of fading [30], which include power control

[31, 32], diversity [33], interleaving and channel coding [34], etc. The received analog

voice signal through the cellular voice channel meets the quality requirements for voice

transmission, but it is still unknown whether fading has impacts on the in-band modem
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solution significantly. Existing technical specification [4] and core standards only describe

requirements, architecture, and simulation conformance tests on the EU eCall system.

The 3GPP eCall conformance tests and previous data modulation schemes treated the

digital voice channel, as if it were an AWGN channel.

To ensure successful deployment of eCall, core standards [35, 26, 36] of the system

had been released in 2011 The latest standards were updated in 2015. The standard EN

15722 [35] defines the eCall MSD format. The standard EN 16072 [36] gives a detailed

description of the eCall operating requirements, while the standard EN 16062 [26] intro-

duced the eCall high-level application requirements (HLAP), using 2G/3G voice channel

of the circuit-switched networks. Fading has rendered the original goal of the EU eCall

standard impossible, meaning MSD transmission delay under four seconds is impossible

to attain.

Data transmission through the cellular voice channel is very challenging and demands

more research to understand the channel. The EN15722:2015 standard defines the emer-

gency data as the MSDwhich is a packet of 140 bytes. In the eCall system requirements, it

is written that “The MSD should typically be made available to the PSAP within 4 seconds,

measured from the time when end to end connection with the PSAP is established.” (Sec-

tion 4.2, 3GPP TS 26.267, Version 15.0.0, July 2018 [4]). This requirement has remained

unachievable since the publication of the first version of the standard in 2009. The road

test results presented by Harmonized eCall European Pilot (HeERO) project showed that

counting all of the MSD packets successfully delivered, the delay of the MSD transmission

had a mean of 13 seconds and the minimum duration of 8 seconds, while the success rate

of the MSD delivery was 71% for long number [37]. Since this system is for emergency
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communications, the 29% failure in MSD delivery needs to be improved. More extensive

research needs to be performed to understand the channel, before the requirement of

delay in the standard can be met.

In our experiments, it was found that although the GSM system employs power control

for its voice channel, heavy fading still exists in the output signal of the GSM voice channel.

This fading affects the success rate of MSD transmission. The impact of fading, in theGSM

voice channel output on the performance of the EU eCall MSD transmission, is still to be

well investigated and yet to appear in the literature.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows.

Chapter 2 gives an overview of the EU eCall system architecture and channel model.

The eCall system requirements and architecture are discussed in detail followed by the

mathematical system model of the channel and the relation between the transmission

power control interval and MSD packet duration.

Chapter 3 describes the hardware design of the in-vehicle system and the measure-

ments and experimental design for the fading statistics.

Chapter 4 presents the fading statistics of the eCall system. Signal power measure-

ments and fading in the GSM voice channel, as determined experimentally, are reported.

Our statistical analysis of the data and a discussion on the cumulative fading distribution of

the voice channel with power control in the GSM system are also provided in this chapter.

Chapter 5 derives analytical expressions for error probability performance. The nu-

merical results of the eCall in-band modem performance are presented in this chapter.

Chapter 6 provides the synchronization frame generation, transmission, and detection
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for the up-link channel in the 3GPP eCall system. Timing synchronization detection pro-

cedure and algorithm for the in-band modem are introduced. Finally, data analysis and

performance evaluation are discussed in this chapter.

Chapter 7 presents a testbed for full duplex real-time UAS communications using the

eCall data transmission channel. The testbed is used to measure the power of signals

received by the UAS in flight for the downlink and by the receiver in the operation center

for the uplink, respectively. A novel method is proposed to measure the power of cellular

networks and obtain fading statistics for full duplex real-time UAS communications. The

channel fading statistics for the UAS communication are obtained.

Chapter 8 summarizes the dissertation and discusses future research directions re-

lated to this dissertation.
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CHAPTER 2 SYSTEM ARCHITECTURE AND CHANNEL MODEL

In the event of an accident, the eCall system automatically or manually establishes an

emergency voice call between the IVS and a nearby PSAP center via the cellular network.

The IVS transfers a data message denoted as the eCall MSD to the PSAP over the in-band

modem of the cellular voice channel. The MSD, as discussed above, can be transmitted

immediately following the connection of the voice call.

2.1 System Requirements and Architecture

2.1.1 The Emergency Call System Requirements

The primary objective for the implementation of the eCall in-band modem is to transmit

emergency data swiftly and reliably. The key eCall requirements can be summarized as

follows [38, 39]:

• The PSAP should successfully receive the MSD within four seconds which is calculated

from the call establishment.

• Both the voice and data from the IVS should be sent to the same PSAP or the same

emergency call center.

• An emergency call may be initiated automatically or manually by the driver or the pas-

sengers.

• The size of the MSD shall not exceed 140 bytes.

• The PSAP can request the IVS to send the MSD through pull mode or the IVS send a

transmission request through push mode.

• The PSAP can send a command to the IVS to terminate the emergency call.

• The MSD shall be appended with at least 28 cyclic redundancy check (CRC) bits.



www.manaraa.com

13

• The PSAP shall send an acknowledgment when the MSD is successfully detected, if

necessary, the IVS shall retransmit the MSD.

• The deployment of the eCall system should minimize the changes to the cellular and

PSTN networks.

2.1.2 The Emergency Call System Architecture

Figure 1 shows the overall architecture of the eCall system including IVS, PLMN,

PSTN, and PSAP. The IVS is used to initiate emergency calls and transmit MSD. The

IVS is comprised of a Global Positioning System (GPS) receiver, an IVS modem, and a

GSMmodule. The GPS receiver provides the vehicle coordinates, time, speed, and direc-

tion. The GPS information and vehicle information are then packaged into the 140-byte

MSD packet and sent to the transmitter of the IVS modem. The modulated MSD informa-

tion or voice information are transmitted through the voice codec, radio modem, and GSM

antenna to the PSAP. The PSAP demodulates and decodes the received uplink signal

and then obtains the MSD data.

Once the emergency call is established, the IVS transmits an ”INITIATION” signal

which consists of a synchronization tone of 500 Hz and data bits modulated by the in-band

modem. The ”INITIATION” signal followed by the modulated MSD signals are sent to the

PSAP through the digital cellular voice channel. The microphone in the IVS is muted dur-

ing the transmission of the MSD to minimize noise and interference. The PSAP receiver

detects the signal, performs demodulation and decoding for the MSD. If the decoding is

successful, the PSAP sends an acknowledgement (ACK) signal to the IVS. Upon receiv-

ing the ACK signal, the IVS switches to talking mode for people in the vehicle to talk with
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Figure 1: The eCall system architecture.

the person at the PSAP for further assistance.

The PSAP architecture of the eCall system is shown in Figure 2. The MSD signal

arrives at the PSAP center through the voice channel of the PLMN and PSTN after the

emergency call is connected between the IVS and the PSAP. The MSD signal is assigned

by the switch of the PSAP center to an idle PSAP operator line. Then MSD information is

displayed on the operator’s computer after passing the PSAP modem, at the same time,

the MSD and the voice signal is stored in a database of the PSAP center. The database

of the PSAP Center can also be connected to the database of the third-party service point

(TPSP) center to provide information Third-party service centers include hospitals, police

stations, fire departments, and other commercial services. Third-party service centers

include hospitals, police stations, fire departments, and other commercial services.
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Figure 2: The PSAP architecture of the eCall system.

2.2 Channel Model

Figure 3 shows a block diagram of the uplink channel in the 3GPP eCall system. The

electronic control unit (ECU) in the IVS continually monitors a trigger signal from the airbag

control module or emergency button in the vehicle. When an accident occurs, the airbag

control module broadcasts an emergency signal through the controller area network (CAN)

bus. Once triggered, the ECU reads the VIN, GPS coordinates, time stamp, type of vehi-

cle, number of passengers, and other relevant information and forms theMSD accordingly.

The IVS dials 112 to establish an emergency call, and the MSD is fed into the IVS data

modem at the same time. The IVS mutes the voice of the microphone to prevent the noise

and passenger voice interfering with the MSD transmission for the duration of the EU eCall

data transmission.
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Figure 3: Block diagram of the uplink channel in the 3GPP eCall system.

The maximum size of the MSD is 140 bytes represented by 1120 binary bits. The bi-

nary bit stream d of the MSD is used to calculate the CRC parity bits. The CRC encoder

output 1148 bits CRC appended MSD to a Turbo encoder [40]. The coding rate is 1/3,

and the Turbo encoder generates 3456 bits MSD packet with 12 trellis bits. A hybrid auto-

matic repeat request (HARQ) scheme is also applied to the channel coded bits to create

eight different redundancy versions (RV). Each RV with 1380 bits are then modulated into

symbols {dm} with three bits per symbol. Symbols are fed into an in-band modulator in

the modem and modulated into uplink waveform sm(k) with 2 ms each symbol for the fast

mode and 4 ms for the robust mode at 8 kHz sampling rate [38]. Therefore, the modula-

tion rate is 1500 bits/s for the encoded binary data stream, not accounting for the 260-ms

synchronization frames and 140-ms muting gaps. The modulation scheme employed in
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the EU eCall is bipolar pulse position modulation (BPPM). These transmitted symbols can

be written as [41]

sm(k) = (−1)mg
[(

k − A
⌊m
2

⌋
(mod (FsTs))

)]
, (2.1)

m ∈ {0, 1, ...,M − 1}

where g(t) is the pulse shaping function,

g(t) =

⎧
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(2.2)

The spectral expression of g(t) is

G(f) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ts, 0 ≤ |f | ≤ 1−β
2Ts

Ts
2 {1 + cos[πTs

β (|f |− 1−β
2Ts

)]}, 1−β
2Ts

≤ |f | ≤ 1+β
2Ts

0, |f | > (1+β)
2Ts

(2.3)

A =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m, m ∈ {0, 1, ...,M/2− 1}

M − 1−m, m ∈ {M/2,M/2 + 1, ...,M − 1}

⌊x⌋ is the floor function, the sampling rate Fs is equal to 8000 Hz, and the symbol time Ts

is 2 ms in the fast mode or 4 ms in the robust mode, and M = 8 is the number of symbols.
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Data transmission over the voice channel of the 2G/3G network is a challenging task

since the speech codecs of the cellular networks with a strong speech signal compression

[42]. The speech frames are 20-ms duration. The IVS modem output signal s(t) is fed into

the speech encoder, which is a highly non-linear device and can cause severe distortion

to the MSD signal. The speech codec output signal is then modulated by the Gaussian

Minimum Shift Keying (GMSK) modulator for transmission through the radio transceiver.

There aremultiple propagation paths between the IVS antenna and cellular tower antenna.

The impulse response of the channel can be expressed as [30, 43]

c(t; τ) =
L∑

k=1

α(t)δ(t− τk) (2.4)

where α(t) is the attenuation factor of the kth path and τk is the time delay of the kth path.

The received signal r1(t) can be written as

r1(t) =
L∑

k=1

α(t)s1(t− τk) + n(t) (2.5)

where n(t) is the noise generated by the wireless channel.

As shown in Figure 3, s1(t) is the output signal of the radio transceiver and r1(t) is the

received signal after multipath propagation from mobile station (MS) to BTS. Amplitude

variations in the received signal occur randomly over time and location, so the multipath

propagation results in signal fading. Fading phenomena can increase interference and

reduce voice channel quality. Power control is used to adjust the transmission power of

the BTS and MS to preserve call quality and reduce the overall network interference and

power consumption [44]. The uplink and downlink transmission power can be changed
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by the BTS and MS every 480 ms. For each 480 ms, changes in transmission power

are random over time. Assume the gain of power control is A(t), which depends on the

environment and moving speed of the vehicle. The received signal by the PSAP modem

after the power control is r(t):

r(t) = A(t)r1(t) (2.6)

where A(t) is a variable of a time-varying gain variable.

The signal r(t) after the BSC, MSC and PSTN network is the input signal of the PSAP

receiver. The PSAP receiver samples and records r(t) at an 8 kHz sampling rate, and

stores 16 bits for each sample. The PSAP continuously monitors the speech signal from a

telephone recording box. Once a synchronization tone and synchronization preamble are

detected, the PSAP modem proceeds to demodulate and decode the full MSD. The PSAP

modem sends negative acknowledgment (NACK)message during transmittingMSD. If the

CRC check succeeds, an ACK message is forwarded to the IVS. The IVS receiver must

detect any ACK and then stop the MSD transmission as necessary.

Figure 4: Relation between transmission power control interval and MSD packet duration.
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The voice channel used to transmit the MSD has fading, and the SNR of the signal

received by the PSAP center is a time-varying random variable. The transmission power

control interval∆T is 480 ms, and the symbol time Ts is 2 ms for the fast modulator mode.

That is 240 symbols or 720 binary bits for each power control interval. As shown in Figure

4, fading may affect one block of 720 bits during the 480 ms. To make sure every bit in

such a system is received correctly, it is critical to measure fading statistics of the voice

channel with power control.

The multipath propagation results in signal fading with random amplitude variations

in the received signal. Fading phenomena can reduce voice signal strength. The GSM

system employs power control to adjust the transmission power of the BTS and the mo-

bile station (MS) to preserve the quality of the voice call and reduce the overall network

interference in a time-varying mobile channel [45, 46, 47]. The BTS and MS measure the

received signal quality (RxQual) and received signal level (RxLev) every 480 ms [48]. The

transmission power will be increased or decreased according to the value of the RxQual

and RxLev. However, it should be noted that the RxQual and RxLev are not accurate and

real-time metrics for voice quality. The power control interval in the GSM voice channel

is 480 ms. This means that the transmission power is fixed during each power control

interval. One symbol contains 3 bits coded data and the symbol time is 2 ms for fast

modulation mode. As shown in Figure 4, fading can affect a block of 720 bits in the fast

modulation mode or 360 bits in the robust modulation mode.

The existing power control technique in the GSM standard can keep the signal quality

at an acceptable level for voice communication. However, the power control frequency is

too slow for the MSD data transmission. Fading in the voice channel after power control
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increases the BER and packet loss of the MSD transmission. Particularly, the fading is

heavy in some regions with low signal strength, and it can affect demodulation of the MSD

packet from symbol to symbol even for a block of 720 bits. Therefore, it is necessary to

measure fading statistics of the GSM voice channel after power control and evaluate its

impact on the MSD transmission.
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CHAPTER 3 EXPERIMENT PLATFORM AND HARDWARE DESIGN

The existing power control techniques under the GSM standard can keep signal quality

at an acceptable level for voice communication, but it is not fast enough for MSD data

transmission, and fading still exists in the voice channel which affects the BER and packet

loss. Fading is particularly strong in some regions with low signal strength and can affect

demodulation of the MSD packet from symbol to symbol. It is necessary to obtain accurate

fading statistics to develop effective techniques to mitigate these phenomena [19].

The power control interval between the BTS and MS is 480 ms, and the EU eCall sym-

bol time or modulation frame is 2 ms in fast modulation mode. If the received MSD signal

contains a deep fade during one power control period, it is not fast enough to compensate

for power loss. The fading may affect up to 240 symbols or 720 bits of the MSD. The signal

fading in this case may result in the MSD transmission failure. In this study, experiments

were run to measure the channel characteristics, average fading duration, level crossing

rate, and bit error performance of the EU eCall in-band modem channel.

3.1 The Measurement Apparatus

A testbed is designed and built to measure the fading characteristics of the voice chan-

nel in Figure 5. The system consists of an IVS, GSM network, PSTN network, telephone

recording box, and PSAP software installed on a desktop computer. Data is processed

after recording.

The IVS hardware platform contains a Freescale i.MX 6 board and a development

board containing u-Blox GSM module LEON-G200 and GPS module LEA-6S with GPS

antenna and GSM antenna in Figure 6. The central processor of the Freescale i.MX 6 is

capable of generating continuous wave (CW) or the eCall modulated MSD signal s(t) that
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Figure 5: Block diagram of the experimental system.

are fed into a GSM voice codec. The output signal of the voice encoder is processed by

the GSM baseband module and the radio module. The radio signal is transmitted through

the GSM antenna and sent to a BTS of the GSM network. The signal received by the

BTS is transmitted through the PSTN network and received by a telephone recording box

located at the PSAP center. A sound card inside the PSAP records the received signal.

The sound card digitizes the output waveform of the telephone recording box, and the

digitized waveform files are stored on a computer hard drive.

The IVSmodemwas implemented on a Freescale i.MX 6 board [49] as shown in Figure

6. The left board mainly includes a Freescale i.MX 6 main processor running at 1 GHz,

1 GB Random Access Memory (RAM), 4 GB Flash memory, and Freescale audio codec

chip SGTL5000. The IVS application software, testing continuous wave (CW) file, testing

MSD data sm(k) are stored in Flash memory in this system. Upon the receipt of a trigger

signal after the system is powered on, the processor sends an ATtention (AT) command to

the GSM module through the universal asynchronous receiver/transmitter (UART) inter-

face to begin calling the PSAP center. Once the voice channel is established, the CW or

modulated MSD data sm(k) are sent to the GSM module through an Inter-IC Sound (I2S)

interface. The output signal of the audio codec is then fed into the GSM voice codec;
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Figure 6: Hardware platform of the in-vehicle system.

the output signal of the voice encoder is processed by the GSM baseband module and

the radio module. The radio signal is transmitted through the GSM antenna and sent to

a BTS of the GSM network. The signal received by the BTS is transmitted through the

PSTN network and received by a telephone recording box located at the PSAP center.

The speech waveform is recorded by the PSAP’s sound card, which digitizes the output

waveform of the telephone recording box. The digitized waveform files are stored on a

computer hard drive.

3.2 In-Vehicle System Design

A block diagram of the IVS hardware is shown in Figure 7. The IVS system includes an

i.MX6 processor, power supply, FLASH, RAM, GSM module, GPS module, Audio Codec,

3-Axis Accelerometer, CAN Transceiver, emergency buttons, and touchscreen.
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Figure 7: Block diagram of the IVS hardware.

The i.MX6 processor is a high-performance, high integration, and automotive-grade

processor released by the Freescale Semiconductor. The processor passes the ACQ100

automotive grade chip test, which targets the increasingly stringent demands for infotain-

ment and telematics markets. The i.MX6 processor can operate at speeds up to 1 GHz

with a quad ARM Cortex-A9 core. The integrated chip also provides integrated power

management. These features are useful for emergency call system as well as entertain-

ment applications. The central processor extends 1 GB of RAM and 4GB of Nand Flash

through the external memory interface. The Nand Flash stores Boot- Loader, an embed-

ded operating system, and the IVS application and data. The RAM runs the application

after the IVS system is initialized.

The power management module of the embedded system must meet the power-on



www.manaraa.com

26

sequence and the power-down sequence to ensure a stable and reliable operation of the

system. The NXP’s power management integrated chip MMPF0100 is ideal for i.MX 6 Se-

ries application processors because the MMPF0100 is of programmable and configurable

features and fully integrated power devices and external components. The MMPF0100

can also provide power for the entire IVS including application processors, memory, and

system peripherals.

The i.MX6 processor continually monitors the signals from the emergency button, CAN

bus, and 2-axis accelerometer when the system is in running mode. There are three but-

tons used for triggering an emergency service manually. The three buttons are physically

connected with three general input/output (IO) port of the i.MX6 processor. When a user

presses one of the buttons, the system should respond immediately. Thus, the processor

configures the IOs as a high priority interrupt sources.

The i.MX6 integrates twoCAN controllers. The IVS uses TJA1041A as aCAN transceiver

to provides an interface between the i.MX6 processor and the CAN network of the vehi-

cle. The TJA1041A is fully compliant with ISO 11898 and is designed for automotive

high-speed CAN applications with very low power consumption and remote wake-up per-

formance. The CAN transceiver can realize the differential transmission and receiving

capability of the CAN controller [50]. The interface includes three electrical wiring, CAN-

HIGH, CANLOW, and GND. The i.MX processor obtains the status of sensors, airbags,

seat belts and other information of the vehicle by the protocol CAN2.0. The transmission

speed is set to 500KBps. As shown in Figure 7.

The accelerometer is integrated for crash detection. The MMA6255 is a two-axis SPI-

compatible accelerometer which is qualified AECQ100 standard. The central processor
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configures the accelerometer and reads a real-time sensor data through SPI bus. There

are four wires including CS, SCLK, MISO, and MOSI. The pin CS is chip selection; the pin

SCLK provides a clock signal for the SPI bus, the pin MISO is the serial data input for the

i.MX6 processor and the data output for the accelerometer sensor, the pin MOSI is the

serial data output for the i.MX6 processor and data input for the accelerometer sensor.

The primary function of the GPSmodule is to get the current time, location and direction

of the vehicle, and other information via satellites. The GPS module is a U-Blox NEO-7P

module with precise point positioning technology. The i.MX6 processor connects to the

GPSmodule via a UART interface which includes three electrical wiring, TX, RX, andGND.

The processor controls the GPS module and reads the GPS information via a standard

RS-232 protocol. The parameter of the UART port is configured as 115200 bps, no parity,

eight data bits and one stop bit. The processor keeps reading the coordinate data and

stores into a defined buffer, which is packaged with other information together into the

minimum set of data. As shown in Figure 7.

The GSM module is used to make an outgoing call or answer an incoming call in case

of an emergency situation. The LEON-G200 module offering full quad-band GSM / GPRS

data and voice functionality meet AECQ100 standard. The GSM module combines power

management unit, baseband, radio transceiver, and power amplifier in a single module,

which could accelerate the development of the IVS. The interface is also used a serial

port between the i.MX6 processor and the GSM module, which includes three electrical

wirings, TX, RX andGND. The central processor controls GSMmodule through a standard

RS-232 protocol. The processor sends AT commands to control the GSM module. Once

the IVS is triggered automatically or manually, the processor will send an AT command
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to call the PSAP center. When the emergency call is answered by the PSAP center, the

i.MX6 processor will receive the response signal from the RX wire.

The audio codec SGTL5000 connects to the i.MX6 processor through I2S bus, and

connects to the GSM module through analog signals. The SGTL5000 is a low power

stereo codec from Freescale, which can achieve very high performance and ultra-low

power functionality.

The output of IVS Modem is digital data with 16 bit, 8000 Hz sampling rate, little-endian

PCM format. The processor sends the PCM data to the audio codec using the IIS bus.

Then the SGTL5000 converts the PCM data to an analog signal output from the digital-

to-analog converter of the audio codec. The output modulated signal is sent in analog

to a digital converter in the GSM module. The MSD signal is sampled, digitized, and

transmitted to the GSM voice band sample buffer before being sent to the frame-based

voice band processing GSM block. An AMR player connected to the speech encoder

is implemented before the uplink path’s final block radio transmission. Similarly, on the

downlink path, the speech decoder extracts speech signals from the starting block of the

radio receiver and sends the downlink signals to the frame-based voice band processing

block and voice band sample buffer.

3.3 Description of the Measurement Locations

Experiments were carried out in different propagation environments. A stationary ex-

periment was conducted in the Communications Laboratory, Engineering Building; a se-

ries of mobile experiments was performed on the Freeway I-75, urban road, and rural

road.

Case 1 involved stationary laboratory measurement within an environment where the
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Figure 8: Measurement location 1: Laboratory of Engineering Building.

IVS transceiver was stationary and surrounded by tall buildings. The experiment was

conducted at the Communications Laboratory located on the third floor of the Engineering

Building. The IVS and GSM antenna were placed on a bench top in the laboratory while

the GPS antenna was placed outside of the lab window. Tall buildings surround the Engi-

neering Building; there is no line-of-sight propagation path between the IVS antenna and

any cellular tower.

Case 2 was conducted on a local freeway with low traffic to collect data for a mov-

ing vehicle in average driving conditions. The experiment was performed between Exit

53 and Exit 83 of the freeway between 10 a.m. to 11 a.m. on Sundays. The IVS was

installed inside of a car and the GSM and GPS antennas were placed on the roof of the

car. There was at least one line-of-sight propagation path between the GSM antenna and

a base station tower. The experiment was performed during a time when few other vehi-
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Figure 9: Measurement location 2: Interstate-75 Freeway with low traffic.

cles were on the three-lane freeway; the test vehicle was driven from south to north in the

middle lane in cruise control mode at speeds from 55 mph to 70 mph. Experiments were

also conducted in heavy traffic conditions on Interstate-75 Freeway, but the test was run

during a weekday rush hour. The measurement was carried out from 5 p.m. to 6 p.m. on

Mondays at an average speed of about 30 mph.

Case 3 was conducted on a narrow, urban road surrounded by tall buildings with fre-

quent interaction between motor vehicles and pedestrians. The vehicle speed on such

roads is usually low. About 38% of all fatal road traffic accidents occur on urban roads

in Europe. Figure 10 shows the downtown street where this experiment was run, where

there are many 20-30 story buildings on either side. The signals sent from the IVS antenna

cannot reach the neighborhood base transceiver station through a line-of-sight path. The

radio signal includes shadow fading, diffraction, scattering, multipath fading, and other



www.manaraa.com

31

Figure 10: Measurement location 3: Urban roads of in Detroit City .

Figure 11: Measurement location 4: Rural roads in the north Michigan.
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complications which impact GSM terminal signal strength and MSD transmission.

Case 4 was similar to Case 3 but was conducted on a rural road. Vehicles tend to

move at higher speeds on rural roads than urban roads, but slower than on freeways. The

fatality rate on rural roads is highest among all traffic environments. More than 55% of

fatal accidents occur on rural roads. The rural road we tested only supports GSM signals;

many rural areas do not support 3G or 4G data signals, and even the GSM signal strength

is very weak. Both sides of the road are covered in trees about 20 m in height.

All experiments are based on T-mobile network. The carrier frequency of the GSM

network uses 1900 MHz in the area. A vertical polarization antenna was used in the test,

and the antenna height is 15 cm. The frequency range of the antenna is from 700 to 2100

MHz. The antenna was sucked on the top of a Sedan with 145 cm height. Data and

waveform for the 4 test cases are analyzed and discussed in the next chapter.
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CHAPTER 4 CHANNEL FADING MEASUREMENT AND STATISTICS FOR THE EMER-
GENCY CALL SYSTEM

4.1 Introduction

The signal received by the PSAP receiver is the sum of electromagnetic waves from

different paths including reflection, diffraction and scattering [29, 30]. Signal transmission

is affected by multipath fading and Doppler shift within the complexity of the wireless com-

munication environment. Techniques for minimizing fading include equalization, diversity

receiving, and channel error correction coding [51, 33]. The power distribution of the re-

ceived signal needs to be obtained through experiments for different environments, so that

proper modulation and coding can be selected accordingly to increase the MSD success

rate and minimize MSD transmission delay. Fading statistics for the EU eCall channel is

also required to evaluate the performance of the MSD transmission including detection,

synchronization, modulation and coding. In this chapter, the cumulative distribution func-

tions (CDF), level crossing rates (LCR) and average fade durations (AFD) are obtained for

the CW signals received by the PSAP in different test cases. The results are compared

with Rayleigh distribution.

4.2 Mathematical Modeling for Fading Channel

4.2.1 Envelope and Power Distribution

The IVS transmits a CW signal to the PSAP through a mobile channel. The baseband

signal include rI(t) received in the in-phase channel and rQ(t) received in the quadrature

channel, respectively. The signal envelope is

z(t) = |r(t)| =
√

r2I (t) + r2Q(t) (4.1)
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When rI(t) and rQ(t) are Gaussian random variables with zero-mean and variance σ2,

z(t) is of Rayleigh distribution with probability density function (pdf) [52]

p(z) =
z

σ2
exp

(
−z2

2σ2

)
(4.2)

The corresponding CDF of the received signal envelope is:

P (Z) =

∫ Z

0

p(z)dz = 1− exp

(
−Z2

2σ2

)
(4.3)

Let Zm be median value of z(t). For Rayleigh distribution, one has Zm = 1.177σ. The

power of the received signal is traditionally normalized to the median in practice [53]. Let

x(t) be the normalized instantaneous power, which is

x(t) = 20 log10
z(t)

Zm
(4.4)

Given z(t) with Rayleigh distribution, the instantaneous power z2(t) is of Chi-square

distribution with 2 degrees of freedom.

As shown in Figure 3, the instantaneous power of the received signal is r2(t). We can

obtain the average power of the signal received by the PSAP is

pa(t) =
1

△t

∫ t+△t

t

r2(t) dt (4.5)

where △t is a time window to calculate the instantaneous power for each calculation du-

ration.
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4.2.2 Level Crossing Rate and Average Fade Duration

The level crossing rate L(Z) is defined as a rate at which the received signal envelope

crosses a given level Z in the downward direction after the fading envelope is normalized

to the root mean square (RMS) level [52, 54]. The number of crossings of the received

signal envelope level Z over the interval [0, T] is

N(Z) =

∫ +∞

0

żp(Z, ż)dż =
√
2πρfmexp(−ρ2) (4.6)

where ż is the derivative of z(t) versus time, p(Z, ż) is the joint probability density function

of z and ż at z = Z, fm is the maximum Doppler frequency and ρ is the value of the

specified level Z which is normalized to the RMS level of the fading envelope. The level

crossing rate is

L(Z) =
N(Z)

T
=

∫ −∞

0

żp(Z, ż)dż (4.7)

which is the LCR when the fades cross a threshold of level Z per second.

The average fade duration is the average time that the signal envelope stays below

a given threshold level Z in the normalized signal amplitude [55]. Let ti denote the fade

duration of the ith fade below threshold level Z over a time interval [0, T ]. Let

p{z(t) < Z} =
1

T

n∑

i=1

ti (4.8)

The average fade duration is
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t̄(Z) =
1

TL(Z)

L(Z)T∑

i=1

ti ≈
p{z(t) < Z)}

L(Z)
(4.9)

The average fade duration also can be expressed as a function of ρ and fm, which is

t̄(Z) =
eρ

2 − 1

ρfm
√
2π

(4.10)

The average fade duration of a faded signal helps to determine the number of data

bits that may be affected during fading. It can also be linked to the BER according to the

signal-to-noise ratio during fading. The statistics results of LCR and AFD are helpful for

designing the modulation scheme, and selecting the symbol time and channel coding.

4.3 Experimental Procedure for Fading Statistics

The amplifier gains of the IVS, the telephone recording box, and the PSAP center were

all set to 0 dB throughout the testing process as we measured the fading statistics of the

voice channel. The received signal power yields the channel features of the GSM voice

channel. The following two procedures were repeated for each experiment.

The procedure for sending and measuring CW signals is shown in Figure 12. The

procedure for sending and measuring MSD is shown in Figure 13. The driver pressed

the emergency button in the IVS to trigger an emergency call which was answered by the

PSAP center. After the voice call was established, the IVS began to send CW signals at

500 Hz with a 20-second frame length. The IVS saved the CW waveform into the Secure

Digital (SD) card of the IVS for comparison against the received waveform by the PSAP;

the PSAP began to record and save data at an 8-kHz sampling rate, 16-bit, and little-

endian mode on a hard drive. This process was repeated 500 times for each case, at the
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Figure 12: The procedure to measure CW signal strength.

end of which the PSAP hung up and complete the CW signal experiment procedure. The

saved data and waveforms were then used to analyze the fading statistics of the GSM

voice channel.

The measurement procedure of the EU eCall MSD is shown in Figure 13. In our ex-

periment, the driver manually pressed the emergency button, then the IVS aggregated

the MSD and initiated an emergency call. After the emergency call was answered and a

voice channel was established, the PSAP sent a START command to the IVS. Then the

IVS began to send a MSD containing the time, location, VIN, speed of the vehicle, the

current GSM signal quality, and other information. The IVS and PSAP recorded the MSD

waveform of each test sample. The decoded MSD was stored in a log file which contained

MSD information as well as the PSAP modem input power and other data. The data and
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Figure 13: The measurement procedure of the EU eCall MSD.

waveforms were used to analyze the manner in which fading affected the MSD success

rate at the same GSM signal quality.

4.4 Fading Statistics for the Emergency Call system

Figure 14 shows the MSD signal sent by the IVS and the received MSD signal at the

input of the laboratory PSAP center. The average fade duration of a faded signal helps to

determine the number of data bits that may be affected during fading. Figure 15 shows

a 10 ms segment of CW signal received by the PSAP. It contained three deep fading

durations t1, t2, and t3 below -10 dB fading depth. The fading depth is the reduction from

the received signal level to the RMS of the signal measured in dB. The fades fell below

-10 dB on three occasions in 10 milliseconds. One of these fades was even lower than

-20 dB. According to the LCR definition, the LCR of the signal is three crosses per 10
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Figure 14: The MSD signal sent by the IVS and the received MSD signal at the input of
the laboratory PSAP center.
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Figure 15: A segment of the received signal level for a GSM network. The RMS of the
signal level is 0 dB. The signal crossed -10 dB for 3 intervals.
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Figure 16: A segment of the signal received by the PSAP. The signal transmitted by the
IVS was CW at 500 Hz. Deep fade existed at the start of the received signal.

ms ( or 300 crosses/s). The AFD is (t1 + t2 + t3 ) / 3, which is about 0.4 ms when the

signal power stays below the threshold -10 dB. When a deep fade exists in the channel,

the PSAP is likely to fail in demodulating and decoding the MSD. In this case, the PSAP

center sends the NACK feedback message to the IVS and requests to resend the data

packet. Therefore, the signal fading can increase the MSD transmission delay and even

lead to MSD data transmission failure.

Figure 16 shows deep fade existed at the start of the received CW signal. There was

deep fade in the time interval [40, 500] ms. The synchronization tone of the EU eCall is a

64-ms sinusoidal tone of frequency 500 Hz for the fast modulation mode. It is suggested
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that the synchronization tone in the 3GPP TS 26.267 to be replaced by a synchronization

tone of 600 ms at 2000 Hz for reliable synchronization.

Figure 17 shows a segment of the received CW signal power obtained in the laboratory,

which contains many deep fading gaps, i.e., spaces in the middle of the received CW

signal. Fading depth is the reduction from the normal received level, measured in dB.

More than 40 fades in this experiment fell below -20 dB during 2500 seconds, with three

of these fades being even lower than -25 dB.

Figure 17: A segment of the received signal power.

Differences in fading depth are thought to be caused by decrease in signal quality,

but the power control between the BTS and the MS can not rapidly compensate for the

transmission power. When a deep faded signal exists in the channel, the PSAP is likely

to fail to demodulate the MSD signal appropriately. In this case, the PSAP center sends
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the IVS NACK feedback information to resend the data packets. Therefore, the signal

fading can increase the average time of MSD transmission and even lead to MSD data

transmission failure.

Figure 18: The received CW signal with fading gaps.

A 10-second received CW signal was used to assess the impact of the fading gap

on MSD transmission as shown in Figure 18. Figure 18 (a) shows a received CW signal

without fading gap. The waveform indicates that there was a jump when the received

CW signal switched from on to off. According to the GSM codec standard, if there is no

speech signal in theMS end, the voice channel will transmit no signal instead of generating

a silence signal. Figure 18 (b) shows two fading gaps in the middle of the received CW

signal within 4 seconds. Each fading gap interval is about 20 ms. There are 60 bits of

the MSD to be affected in the fast mode. It is impossible to demodulate and decode the
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Figure 19: Probability density function of the received CW signal power versus Gaussian
distribution and Rayleigh distribution. The data were obtained from the test case 2 with
the transmitted CW signal at 500 Hz.

MSD with two fading gaps in 4 seconds, but the 3GPP eCall standard requires that the

PSAP should successfully receive the MSD within 4 seconds from the time when the voice

channel is established. To this effect, fading still exists in the voice channel of the GSM

cellular system with power control; the fading will inevitably delay the MSD transmission

time and reduce the MSD success rate. The IVS must retransmit the MSD repeatedly and

switch to the robust mode.

Figure 19 shows the probability density function of the received CW signal power. The

data was obtained from the test Case 2 with the transmitted CW signal at 500 Hz. Gaus-

sian distribution and Rayleigh distribution with the same variance of the received signal
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power are plotted for comparison. It can be seen that the power distribution of the received

CW signal is neither Rayleigh nor Gaussian.
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Figure 20: Cumulative fading distribution of different windows.

Cumulative distribution functions are plotted in Figure 20 to show the cumulative fading

distribution of the GSM system voice channel. About 0.01% of the received power attenu-

ated 27 dB, 0.1% attenuated over 16 dB, 1% attenuated over 5.8 dB and 10% attenuated

over 4.8 dB. The GSM voice channel featured strong fading, which will increase data

packet loss rate and reduces the data transmission success rate, as discussed above.

Figure 21 shows the CDFs of the CW signals at 500 Hz received by the PSAP in

different test environments. The Rayleigh distribution is plotted for comparison. The data

was collected in the laboratory, on the freeway, urban road and rural road. The fading
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Figure 21: The CDFs of the CW signals at 500 Hz received by the PSAP in different test
cases. The Rayleigh distribution is plotted for comparison.

cumulative distributions were compared to the Rayleigh distribution. When the probability

was less or equal to 0.1%, the fading and attenuation was -22 dB on the urban road, -20.5

dB on the rural road, -19 dB on the freeway, and -16.7 dB in the laboratory, respectively.

The maximum fade occurred on the urban road. When the probability was less or equal to

1%, the fading and attenuation was -14.8 dB on the urban road, -15.2 dB on the rural road,

-14 dB on the freeway, and -13.6 dB in the laboratory, respectively. When the received

signals were 10 dB below the median value, the probability was 7.1% on the rural road,

6.0% on the urban road, 5.8% on the freeway, and 4.3% in the laboratory, respectively. The

results show that the signals received by the PSAP exist heavy fading, which will increase
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Figure 22: The CDFs of the CW signals received by the PSAP at different frequencies on
the I-75 freeway. The Rayleigh distribution is plotted for comparison.

the data packet loss rate and reduce the data transmission success rate.

Figure 22 shows the CDFs of the CW signals received by the PSAP at different fre-

quencies on the I-75 freeway. The Rayleigh distribution is plotted for comparison. When

the probability was less or equal to 0.1%, the fading and attenuation was -19 dB for the 500

Hz CW signal, -17.5 dB for the 800 Hz CW signal, -13 dB for the 1000 Hz CW signal, -11.5

dB for the 1500 Hz CW signal, -9.5 dB for the 2000 Hz CW signal, -14 dB for the 2500 Hz

CW signal, -16.2 dB for the 3000 Hz CW signal, -18 dB for the 3500 Hz CW signal, re-

spectively. When the received signals were 10 dB below the median value, the probability

was 5.9% for the 500 Hz signal, 1.6% for the 800 Hz signal, 0.45% for the 1000 Hz signal,
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0.2% for the 1500 Hz signal, 0.08% for the 2000 Hz signal, 0.35% for the 2500 Hz signal,

2.5% for the 3000 Hz signal, 4.2% for the 3500 Hz signal, respectively. It can be seen that

the fading of the 500 Hz CW signal and 800 Hz CW signal were more severe than the

fading of the 1500 Hz CW signal and 2000 Hz CW signal. The worst fading occurred for

the CW signal at 500 Hz which was the closest to the Rayleigh fading distribution.

In the 3GPP 26.267 standard, the synchronization tone for signal detection and syn-

chronization is 500 Hz for the fast modulation mode and 800 Hz for the robust modulation

mode. We recommend to move the synchronization tone from 500 Hz to 1500 Hz for the

fast modulation mode and move the synchronization tone from 800 Hz to 2000 Hz for the

robust modulation mode. This will give about 7.5 dB improvement in the fast modula-

tion mode and 8 dB improvement in the robust modulation mode for signal detection and

synchronization, respectively.

Level crossing rate is the number of fades for a given time interval. It shows how often

the fades occur for a given threshold. Figure 23 shows the LCRs of the CW signals at 500

Hz received at different test locations. It can be seen that the LCR of the signal received

on the rural road was the highest among the four test cases. The lowest LCR occurred

in the laboratory. When the fade fell below -10 dB of the root mean square (RMS) of

the received 500 Hz CW signal, the LCR was 3 fades per second on the rural road, 2.2

fades per second on the freeway, 3.3 fades per second in the laboratory, and 3.6 fades

per second on the urban road, respectively.

Figure 24 shows the LCRs of the CW signals received by the PSAP at different fre-

quencies on the I-75 freeway. When the received signal level was 10 dB below the RMS

value, the LCR of the 500 Hz signal was 3.3 fades per second; the LCR of the 800 Hz
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Figure 23: The level crossing rates of the CW signals at 500 Hz received by the PSAP in
different test cases.

signal was 1.9 fades per second; the LCR was less than 1 fade per second for the CW

signal at 1000 Hz or 1500 Hz or 2000 Hz; the LCR of the 2500 Hz signal was 1.2 fades

per second; the LCR of the 3000 Hz signal was 1.9 fades per second; the LCR of the 3500

Hz signal was 3.3 fades per second. The maximum LCR occurred at 500 Hz and 3500

Hz CW signal.

Figure 25 shows the AFDs of the CW signals at 500 Hz received by the PSAP in

different test cases. When the received signal level was -10 dB below the RMS value, the

AFD of the received signal in the laboratory was 39 ms; the AFD of the received signal

on the freeway was 36 ms; the AFD of the received signal on the urban road was 33 ms;
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Figure 24: The level crossing rates of the CW signals received by the PSAP at different
frequencies on the I-75 freeway.

the AFD of the received signal on the rural road was 48 ms. The maximum AFD occurred

on the rural road. The symbol time is 2 ms for the fast modulation mode. One symbol

represents 3-bit data. If a fade occurs during the MSD transmission, the 48 ms average

fade duration may affect 24 symbols (or 72 bits) for the fast modulation mode. It is too

difficult for the Turbo code in the 3GPP TS 26.267 standard to correct a burst of 72-bit

errors within one MSD [38, 56].

Figure 26 shows the AFDs of the CW signals received by the PSAP at different fre-

quencies on the I-75 freeway. When the received signal level was 10 dB below the RMS

value, the AFD was 36 ms for the CW signal at 500 Hz, 18 ms for the CW signal at 800
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Figure 25: The average fade durations of the CW signals at 500 Hz received by the PSAP
in different test cases.

Hz, 10 ms for the CW signal at 1000 Hz, 4 ms for the CW signal at 1500 Hz, 6 ms for the

CW signal at 2000 Hz, 6 ms for the CW signal at 2500 Hz, 26 ms for the CW signal at

3000 Hz, 24 ms for the CW signal at 3500 Hz. The maximum AFD occurred at 500 Hz

CW signal. In the frequency range [1000, 2500] Hz, the fading was much smaller.

The fading is less severe than the Rayleigh fading. It is not a Gaussian process either.

Analyzing the distribution of the GSM signal fading after power control is nontrivial and

worth further study. The fading varies with frequency. The CW signals at 500 Hz and 800

Hz for detection and synchronization experience severe fading. In the frequency range

[1000, 2500] Hz, the fading is in the range [-13, -9.5] dB. The longest fading duration

observed for the 500 Hz CW signal was 540 ms. The fading needs to be considered in

the future revision of the 3GPP TS 26.267 standard.
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Figure 26: The average fade durations of the CW signals received by the PSAP at different
frequencies on the I-75 freeway.

4.5 Conclusion

A testbed is designed and developed to obtain the fading statistics of the EU emergency

call channel. Experiments are performed in different environments to obtain the CDF,

LCR, and AFD of the received signal. It is found that with probability less or equal to

0.1%, the fading is -19 dB for the CW signal at 500 Hz and -9.5 dB for the CW signal at

2000 Hz, respectively. It is recommended to move the 500 Hz CW signal and the 800 Hz

CW signal for detection and synchronization in the 3GPP TS 26.267 standard to around

2000 Hz for minimum fading. This will give 9.5 dB improvement in signal detection and

synchronization. Signals in the frequency range [1000, 2500] Hz experience much smaller
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fading.

We also found it impossible to demodulate and decode the MSD with two fading gaps

in four seconds. The cumulative fading distribution of the channel indicated that strong

fading persisted in the GSM voice channel even after power control. The fading statistics

indicated that about 0.01% of the received power attenuated 27 dB, 0.1% attenuated over

16 dB, 1% attenuated over 5.8 dB, and 10% attenuated over 4.8 dB. Fading throughout

the entire voice channel severely impacted the MSD data transmission in our experiment.

The experiment results have shown that severe fading still exists in the voice channel of

the GSM network with power control. The fading explains the substantial delays observed

in the NXP road trial of the MSD transmissions employing the 3GPP TS 26.267 system,

which was also seen in experiments using this testbed. The fading increases the MSD

transmission delay and reduces the success rate of the MSD transmission. The fading

should be considered in the future revision of the 3GPP TS 26.267 standard to minimize

the MSD transmission delay in emergency call systems.
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CHAPTER5ERRORPROBABILITYPERFORMANCEEVALUATIONFORTHE IN-BAND
MODEM

5.1 Introduction

The EU eCall is expected to reduce rescue response time and save thousands of

lives every year. However, the test setup, used to select the eCall in-band modem, was

simulated between two computers in a laboratory. The impact of various time-variant and

non-linear elements in the channel affecting eCall MSD transmissions, such as power con-

trol, adaptive echo cancellers, noise cancellers, and transcoding between codecs, was not

taken into consideration in the selection. These impairments can affect the performance

of the eCall in-band modem, resulting in data errors. Additionally, according to the test

results in the previous chapter, fading still exists in the cellular voice channel, even if some

anti-fading techniques such as diversity, interleaving, and power control, are applied in the

mobile network to eliminate the consequence of multipath propagation and Doppler shift.

The fading can increase the error probability and intersymbol interference (ISI), which

can reduce the success rate of the received MSD. Furthermore, the spectral broadening

caused by Doppler shift, also affects the performance of the eCall data transmission. The

probability of bit error rate is a widely used and valuable statistical indicator of performance

when estimating the performance of digital communication systems [57].

Fading, in the GSM channel, can notably degrade the MSD signal as it is compressed

by the GSM speech coders and voice activity detectors (VAD). Existing methods for the

in-band modem over voice channels can be divided into two categories [24]. The first

category is to minimize the BER; the second category emphasizes maximizing the trans-

mission speed in an acceptable BER. The error probability performance results will then
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be compared to the bipolar 4-PPM modulation scheme used in the EU eCall standard.

5.2 Analytical Expressions for Error Probability Performance

The SNR of a received signal is defined as the ratio of the received signal power Pr to

the noise power within the bandwidth of the transmitted signal. The received power Pr is

affected by multipath fading, the path loss, shadowing, and the transmitted signal power.

The noise power can be calculated by the spectral properties of noise the bandwidth of the

transmitted signal [52]. Assuming that the MSD signal passes through the AWGN channel

without fading, the received signal by the PSAP is the sum of the transmitted MSD signal

and Gaussian white noise n(t), which is a Gaussian random process with zero mean and

power spectral density N0/2. Specifically, if the bandwidth of bandwidth of the transmitted

signal is 2B, the total noise power is N = N0/2× 2B = N0B. So the SNR of the received

signal [52] is given by

γ =
Pr

N0B
(5.1)

Let Eb represent energy per bit, and Es represent energy per symbol. The quantities γs =

Es/N0 and γb = Eb/N0 are called the SNR per symbol and the SNR per bit, respectively.

The SNR γ then can be expressed as

γ =
Pr

N0B
=

Es

N0BTs
=

Eb

N0BTb
, (5.2)

where Ts is the symbol time and Tb is the bit time. For M-aray modulation scheme.
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pb ≈
Ps

log2M
(5.3)

In the AWGN channel, the probability of symbol error depends primarily on the SNR

γs of the received signal. In a channel with fading, the SNR is a random variable and

changes with the distribution of the fading. Thus, the statistical average SNR of the fading

distribution is calculated to estimate the probability of symbol error. The average SNR [52]

γ is,

γ =

∫ ∞

0

γpγ(γ) dγ. (5.4)

Where γs denotes the instantaneous SNR per symbol at the receiver output that includes

the effect of fading.

It is assumed that γs is approximately constant during a symbol time Ts. Then the

averaged probability of symbol error Ps is calculated by integrating the error probability in

AWGN channel over the fading distribution

Ps =

∫ ∞

0

Ps(γ)pγs(γ) dγ, (5.5)

where Ps(γ) is the probability of symbol error in AWGN channel with SNR γ.

The in-band modem used in the eCall system is bipolar 4PPM. The probability of sym-

bol error M-ary PPM [58, 59] can be expressed as,

Ps(γ) = erfc

(
1

2
√
2

√
γ
M

2
log2 M

)
(5.6)

where erfc(.) is the complementary error function. The fading distribution has been cal-
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culated using fading statistics in chapter 4. The results of pγs(γ) and Ps(γ) are substituted

into the Equation (5.6). Then, the error probability of the in-band modem of the eCall voice

channel can be calculated.

5.3 Experimental Procedure and Data Collection

The MSD transmission experiment was conducted with randomly generated MSD data

for 500 times in each environment to ensure statistical significance. BER data was col-

lected in the five experimental environments described in Chapter 3. The following test

procedure was repeated for each set of test conditions. The IVS recorded the GSM signal

strength for each test and the PSAP calculated the bit error rate.

Figure 27: Block diagram of BER performancemeasurement for the eCall in-bandmodem.

Bit error performance was evaluated via the following procedure.

The IVS platform is tested and verified by pressing the emergency button to trigger an

emergency call. The test procedure is shown in Figure 28. The detailed steps of the test

process are.

1. When the emergency button is pressed, the IVS calls the PSAP and a voice call will

be established between the IVS and PSAP.

2. When the IVS is running in push mode, an INITIATIONmessage is sent to the PSAP.

The INITIATION message is used to tell the PSAP that an emergency call is activated.

3. Upon the detection of the synchronization preamble and when PSAP detects the
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Figure 28: The EU emergency call BER test procedure.

INITIATION message, the PSAP sends a START message to the IVS continuously up to

5 times.

4. Once the IVS has successfully decoded the START message, which indicates that

the PSAP is ready to receive the MSD, the IVS begins transmitting one synchronization

frame followed by the first redundancy version MSD RV0.

5. If the PSAP does not demodulate and decode the MSD redundancy version RV0, a

negative acknowledgment (NACK) message is sent to the IVS.
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6. If the IVS receives the NACK message, the IVS then send MSD RV1 to the PSAP.

7. Once the PSAP successfully obtains the MSD, the PSAP sends an application layer

ACK, which indicates that the MSD is successfully received by the application layer.

8. The IVS stops sending the MSD when the ACK is received by the IVS.

9. The eCall system is then switched to voice talk. The driver and the PSAP operator

start a conversation at this moment.

10. Finally, the original MSD sent by the IVS and the received MSD by PSAP are

compared and the error probability is calculated accordingly.

Figure 29: The MSD signal sent by the IVS and the received MSD signal by the PSAP.

Figure 29 shows the MSD signal sent by the IVS and the received MSD signal by the

PSAP. Figure 30 shows the original downlink feedback messages sent by the PSAP and

the received feedback messages by the IVS.

5.4 Data Analysis and Discussion

Figure 31 shows the probability distribution of the received signal power around its

median, under the eCall channel, Gaussian channel, and Rayleigh channel. The curves

indicate that the signal power probability distribution in the eCall channel is neither Gaus-
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Figure 30: The downlink feedback messages sent by the PSAP and the received feedback
messages by the IVS.
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Figure 31: PDFs of the eCall channel, AWGN chanel and Rayleigh fading channel.

sian nor Rayleigh distribution. The figure also shows that the signal fading was mainly

concentrated in the -10 to 5 dB range.

Equation (6.6) expresses the BER of the M-array PPM modulation scheme in the
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Figure 32: BER performance of 4-PPM under the voice Channel, AWGN channel, and
Rayleigh fading channel.

AWGN channel. The BER value can be calculated when the SNR varies from 0 dB to

35 dB, then BER values and the measured probability distribution values can be sub-

stituted into Equation (6.7) to calculate the probability distribution in the eCall channel.

Figure 5.4 shows the error probability of 4-PPM in the eCall channel, AWGN channel, and

Rayleigh fading channel. The required SNR is approximately 9.6 dB to maintain a 10−3 bit

error rate in the eCall channel, AWGN channel, and Rayleigh fading channel. Conversely,

about 24.6 dB SNR is needed to maintain the same error rate in the eCall channel; the

SNR should be 35 dB to maintain the same BER performance.

5.5 Conclusion

This chapter presents a straightforward empirical methodology that can be readily used

to measure the average bit error rate of the nonlinear time-varying fading channel. Fur-

thermore, this research uses road test to collect realistic error data for both fast mode and

robust mode transmissions in the different road environment and calculate BER for bipolar
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PPM modulation techniques in fading channels. In fading channels, the received signal

power is not constant but changes as the fading of the channel changes. The BER of the

fading channel averaged over the different fading states reveals the nature of the system

behavior and illustrates the system performance.
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CHAPTER 6 TIMING SYNCHRONIZATION PERFORMANCE EVALUATION FOR THE
IN-BAND MODEM

6.1 Introduction

Timing synchronization is critical for reliable symbol detection and timing offset esti-

mation, in a wireless communication system. Especially in applications such as in-vehicle

eCall systems, reliable timing synchronization is one of the most significant factors for suc-

cessful emergency data transmission [60]. Acquiring accurate symbol timing is particularly

challenging in fading channels because it is very difficult to e estimate signal parameters

before demodulation. In this chapter, an experiment is designed to evaluate the perfor-

mance of the selected synchronization sequence in the eCall system and determine the

detection probability of the synchronization preamble.

6.2 Synchronization Signal Generation and Format

Figure 33: Block diagram of the uplink channel in the 3GPP eCall system.
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Figure 33 shows the detailed structure of the IVS modem and PSAP modem. The IVS

modem includes a BPPM modulator, a synchronization generator, and a muting signal

generator. An MSD multiplexer synthesizes the generated signals and transmits to the

PSAP through the uplink channel. The PSAP modem consists of a synchronization de-

tector and a PSAP demodulator. The MSD signal received by the PSAP is identified by the

detector to obtain a time synchronization. Simultaneously, the time synchronization signal

is provided to the PSAP demodulator, and the modulated MSD signal is demodulated ac-

cording to the obtained timing information. If the synchronization detector does not detect

the time synchronization signal or false alarm detection occurs, the MSD signal cannot

be correctly received. As shown in the Figure 34, the IVS starts detecting the START

signal, and the PSAP starts detecting the INITIATION signal after an emergency call is

established. Once the START signal is successfully detected, the IVS starts sending the

uplink signal including the 260 ms synchronization frame and the 8 RVs MSD data frames

to the PSAP until the PSAP receives the data. If the miss detection happens at RV0, the

IVS needs to resend the second version RV1 with 1.32 s length. It will increase the trans-

mission time of the MSD and affect the real-time transmission. Therefore, synchronous

detection is crucial for the real-time transmission of MSD data.

The synchronization frame in the eCall consists of two parts: synchronization tone

st(n) and synchronization preamble sp(n). The st(n) is a sampled sinusoidal signal with

a length of 64 ms. A sinusoidal signal with a frequency of 500 Hz indicates the fast mod-

ulator mode and a synchronization tone of an 800 Hz sinusoidal signal is chosen for the

robust modulator mode. The st(n) includes 8000 * 0.64 = 512 samples when the sam-

pling rate is 8000 samples per second. Each sample is represented by a 16-bit binary.



www.manaraa.com

64

Figure 34: The time line of synchronization process for the eCall system.

The first 512-sample pulses, as shown in Figure 35, represent the synchronization tone.

The synchronization tone is followed by the synchronization preamble, whose duration is

196ms; a total of 8000 * 0.64 = 1568 samples.
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Figure 35: Synchronization frame of the in-band modem.

The synchronization preamble is a sequence of pulses that are known at the receiver.

Figure 37 shows the pulse sequence for the synchronization preamble, The synchro-
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nization preamble pulse sequence is composed of 5 basic pseudorandom noise (PN)

sequences of length 15. The value of the base PN sequence is (1,1,1,1,-1,1,-1,1,1,-1,-

1,1,-1,-1,-1). Each ’1’ represents a signed pulse with an amplitude value of 20,000. The

five base PN sequences are numbered from left to right as the number 1 to 5. The first

and fifth PN sequences are inverted (i.e., all elements are multiplied by -1), and the last

3 elements of the first inverted PN sequence are the same as the first 3 elements of the

second PN sequence. The three overlap elements are transmitted only once. Similarly,

the last three elements of the fourth normal phase PN sequence are identical to the first

three elements of the fifth inverted PN sequence, and the overlap elements are transmit-

ted only once. Thus, the length of the synchronization preamble pulse sequence is 75 -

3 - 3 = 69 samples. Figure 36 illustrates the method of generating the pulse sequence.

Figure 35 shows a generated synchronization preamble pulse sequence with length of 69

samples. The adjacent pulse ’1’ of the synchronization preamble pulse sequence is then

inserted with 21 zero samples, and 71 zero samples are placed before the first pulse to

form a synchronization preamble. The resulting sp(n) has a duration of 71 + 69 + (68 * 21)

= 1568 samples, or 196 ms. Therefore, the total length of the synchronization frame is 260

milliseconds or 13 speech frames. The synchronization preamble is an autocorrelation-

optimized pulse sequence that is used not only for sync frames, but also for inserting a

portion of the sync preamble into the middle of the MSD for uplink synchronization tracking

purposes.

6.3 Experiment Design

It is difficult to precisely determine the beginning and end of the preamble due to the

fading and distortion of the channel. Further studies are required to design experiments
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Figure 36: The method of generating the synchronization preamble pulse sequence..
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Figure 37: Pulse sequence of the synchronization preamble.

to access the signal synchronization performance for the EU eCall system.

Figure 38 shows a block diagram of the synchronization frame generation, transmis-

sion, and detection for the up-link channel in the 3GPP eCall system. In order to evaluate

the detection probability of the synchronization signal, the in-band modulator and muting

generator were removed from the testing system. The signals generated by the synchro-

nization tone generator and the synchronization preamble generator, are synthesized and

passed through the AMR vocoders and AWGN channel, and finally, the synchronization
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Figure 38: Block diagram of the synchronization frame generation, tansmission, and de-
tection for the up-link channel in the 3GPP eCall system.

preamble is detected at the PSAP synchronization detector.

The synchronization signals pass through vocoders with AMR rates of 4.75 kbps, 5.15

kbps, 6.70 kbps, 7.40 kbps, 10.2 kbps, and 12.2 kbps, respectively. The SNR setting

of the AWGN channel is stepped up by 0.5 dB, gradually. The synchronization signal

was subjected to 1000 experiments through the AMR vocoder and the AWGN channel

corresponding to each SNR value. For each successful detection, the synchronization

preamble counter is incremented by 1, and the detection probability is obtained.

6.4 Detection Algorithm and Data Analysis

Figure 39 shows the flow chart of timing synchronization detection algorithm for the

in-band modem. The synchronization detector scans the input signal and checks a 500

Hz or 800 Hz sinusoidal signal through the synchronization tone detector. The input sig-
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Figure 39: The flow chart of timing synchronization detection algorithm for the in-band
modem.

nal arriving at the PSAP correlates with the stored PN sequence at the receiver after the

synchronization tone is detected. If the input signal and the PN sequence are autocorre-

lated, the matched filter outpus five correlation peaks. Finally, the five peaks along with

the distances between the peaks are used to identify the starting position and timing offset

of the data frame according to the detection algorithm. The autocorrelation property of the

pulse sequence is shown in Figure 40.

The detection algorithm determines the synchronization preamble and timing offset by

checking the matching of the distance between the five correlation peaks and the number
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Figure 40: Autocorrelation of the synchronization preamble pulse sequence.

of detected peaks. The PN sequence at the receiver is correlated with the received sync

preamble to generate five main peaks (1 negative peak, 3 positive peaks and 1 negative

peak) , as shown in Figure 40. The timing offset is determined by any of the three detected

peaks and the corresponding time distance between the peaks. The combination of the

three detected peaks and the corresponding time distance is always unique. Table shows

the combination of the detected peaks . The correlation peaks in Table 1 use ’- ’ to indicate

a negative peak and ’+’ to indicate a positive peak. If only a pair of peaks (2, 4) or a pair of

peaks (1, 5) is detected and the distance is correct between each other, the preambles are

considered to be detected as long as they satisfy a certain amplitude constraint. Their av-

erage value should not be less than half of the global maximum synchronous filter output,

or an additional peak can be identified to obtain timing. After the synchronization detector

obtains the timing signal, the PSAP modem is enabled to complete the demodulation of

the MSD. The advantage of this detection algorithm is that the synchronization detector
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can reliably detect the synchronization preamble even if the signal quality is poor on a

channel, or the loss of the speech frame may result in the loss of the correlation peak.

Table 6.1 shows the combination of three peaks detected, each of which lost two peaks

after passing through the matched filter. Each entry in Table 6.1 represents a unique mode

peaks and the time distance between peaks. The sync signal can be reliably detected.

Figure 41 shows the performance of the synchronization preamble through various

AMR vocoders and AWGN channel. As shown in Figure 41, when the synchronization

signal only passes through the AWGN channel without the AMR encoder and the SNR is

-3.8 dB, the detection probability can reach 100%. When the SNR is -5 dB, the detection

probability can achieve 94% can be achieved. When the synchronization signal passes

through the AMR vocoder of 10.2 kbps or 12.2 kbps, their performances are pretty close

to that of the AWGN channel, which indicates that the synchronization performance of the

in-band channel is close to that of the Gaussian channel when high rate vocoders are

used. The lowest detection probability occurs in the case when an AMR vocoder rate of

4.75 kbps is used, indicating that the low coding rate has a significant influence on the

Table 1: Detected correlation peaks for the timing synchronization
Cases 1 2 3 4 5
Case1 + +
Case2 - -
Case3 + + -
Case4 + + -
Case5 + + -
Case6 + + +
Case7 - + -
Case8 - + -
Case9 - + +
Case10 - + -
Case11 - + +
Case12 - + +
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Figure 41: Comparison of the detection probability of the synchronization preamble
through various AMR vocoders and AWGN channel.

synchronization signal. To achieve a 90% detection probability, the required SNR of the

AMR vocoder of 4.75 kbps has to be 6.0 dB more than the SNR of the AWGN channel.

When the SNR is greater than 3.5 dB, the probability of detection for all test cases can

reach 100%. Therefore, in order to ensure the correct detection of the synchronization

signal, the SNR of the input signal received at the PSAP receiver is recommended to be

more than 3.5 dB.

6.5 Conclusion

The synchronization preamble of the in-band modem is particularly critical for reli-

able detection and precise delay estimation. This chapter presents the generation of the

synchronization preamble and introduces a simple approach and procedure for the per-

formance evaluation. Finally, timing estimation performance and synchronization detec-
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tion probability are obtained by transmitting the synchronization preamble through various

adaptive multi-rate vocoders and additive white Gaussian noise channel.
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CHAPTER 7 CHANNEL FADING MEASUREMENT AND STATISTICS FOR UAS COM-
MUNICATIONS

7.1 Introduction

Recently the unmanned aerial system industry has experienced a strong growth. They

have been employed in numerous applications including agriculture, wildfire management,

disaster monitoring, remote sensing, wind estimation, filmography, traffic control, search

and rescue, medical aid and inspection of infrastructure, railroad, road and power line [1,

61, 2, 62]. “Unmanned aerial systems (UAS) [63, 64], sometimes referred to as drones, are

multi-use aircraft controlled from a licensed operator on the ground.” The Association for

Unmanned Vehicle Systems International estimates that the unmanned aircraft services

will have a $82 billion impact on the global economy from 2015 to 2025 [1]. A radio link

between the UAS and the operator is required by the FAA for real-time UAS ID tracking,

command and control [3]. The Aviation Rulemaking Committee recommends a maximum

total latency of 6.5 seconds and update rate greater or equal to 1 Hz for UAS ID tracking.

This is a tighter requirement than the automatic dependent surveillance - broadcast (ADS-

B) system for manned aircraft and the ADS-B system has not achieved this performance

yet. The FAA Part 107 requires a UAS weighing less than 55 pounds (or 25 kg) to fly below

400 feet (or 122 m) above ground level (AGL) unless under special waiver. In Europe, it

is 120 m. When a loss of aircraft power occurs at 400 feet above ground level, it takes 5

seconds for the UAS to hit the ground through a free fall. Therefore, the round trip latency

of the command and control link should be less than 5 seconds for safety reasons, a

requirement very difficult to satisfy in beyond-visual-line-of-sight (BVLOS) operations.

Current radios being tested for real-time tracking and command of UAS include cellular
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radio, satellite radio, and telemetry radio. Cellular radio infrastructure including 2G/3G/4G

provide the most extensive coverage, and the cost of a user terminal is low. All of the data

channels in digital cellular systems were originally designed using IP, with a random data

transmission latency greater than 6.5 seconds. How to transmit real-time data through

the existing digital cellular infrastructure remains a world challenge. Satellite radio is of

larger size and higher cost. Its coverage for commercial applications is much smaller than

the digital cellular infrastructure. In [65], it was reported that ”pilots routinely deal with a

five to eight-second delay on their controls when flying beyond-line-of-sight (BLOS) due to

encryption overhead and the time it takes to relay commands via satellites. ” Telemetry ra-

dio is point-to-point with the smallest coverage currently available. For mass deployment

of UAS beyond-visual-line-of-sight (BVLOS) operations, telemetry radios fail to meet the

same coverage capability of cellular networks or satellites. Satellites or long-range com-

munication systems are expensive and slow for UAS applications [66].

In [67], LTE network in San Diego was tested for UAS applications. The mobility route

was at 5 m/s with 0.5 Mbps UDP uplink throughput requested. The maximum flight altitude

was 400 feet AGL. Three bands were tested including PCS, AWS and 700 MHz. Strong

fading existed in the downlink and the uplink (Figure 2-8, Figure 2-13, [67]). On the ground,

the reference signal received power (RSRP) in the downlink was in the range [-105, -65]

dBm in the PCS band, [-100, -60] dBm in the AWS band and [-95, -55] dBm in the 700

MHz band. The uplink transmission power was in the range [-22, 15] dBm per resource

block in the 700 MHz band. The median of the Signal to Interference and Noise Ratio

(SINR) received by the UAS at altitude was 5 dB lower than on the ground. This means

that it is challenging for the cellular radio to maintain link availability during a full UAS flight.
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Worldwide, GSM has the most extensive coverage. The coverage of 3G networks is more

extensive than 4G LTE. 5G networks are currently in the research and development stage

[68]. It is interesting to obtain fading statistics in 2G/3G networks for UAS communications

through the measurement of cellular signals. Knowing fading statistics is necessary to

design a communication system that meets the requirements of link reliability and delay

[69, 70, 71].

In [72], key challenges and requirements for UAS communication links were discussed.

The study showed that high availability, chaining and multi-priority design are required

for UAS communication links. The work suggested that communication links using both

multi-carrier modulation and time division multiplexing would be suitable for UAS commu-

nications.

In [66], meshed airborne communication networks were considered for UAS. Authors

claimed that only meshed ad hoc networking can meet the communication demands for

mass deployment of UAS. Feasibility was shown through experiments. The ability of air-

borne UAS networks with controlled mobility was discussed to improve performance.

In [73], a multi-objective path planning method was proposed for UAS to employ joint

offline and online search. Based on the static safety index map, the offline search reduced

the travel time and avoided static obstacles. The online search was based on the dynamic

safety index map of unexpected obstacles to bypass unexpected obstacles. The effec-

tiveness of the proposed method was verified through an experiment in a dynamic urban

environment.

In [74], the researchers studied flying Ad Hoc network (FANET) for UAS application.

Two routing algorithms were compared for optimized link-state routing (OLSR) and pre-
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dictive OLSR. UASs with fixed wings were employed in experiments. It was shown that

the predictive OLSR gave better performance.

In [75], a field experiment was conducted to collect data using UAS. It was shown

that flying at higher altitude helped to improve UAS communication performance. In [76],

a modified airframe was used for navigation, image acquisitions, and payload delivery.

The work focuses on the onboard image processing, autonomous operation and rescue

mission.

7.2 System Model

Consider measuring the power of the received signal for both uplink and downlink

in cellular systems. For data channels, the modem input is data stream, and output is

decoded bits. There is no way to measure power directly for data channels. For a voice

channel, both of the channel input and output are analog signals. Because the carrier

frequency is the same, the physical fading process is the same for both voice channel

and data channel. Data channels utilize more advanced power control algorithms and

were expected to experience smaller variance of fading at the power control loop output.

Therefore, fading statistics measured in the voice channel can serve as the benchmark in

UAS communications through cellular networks.

Figure 42 is the block diagram of the communication system designed for this UAS

communication experiment. A UAS is installed with a UAS radio consisting of an electronic

control unit (ECU), a cellular transceiver and a GPS receiver. The ECU is interfaced with a

flight controller. The ECU can generate signal s(t) to be transmitted over the voice channel

of the cellular network using the cellular transceiver. The UAS radio establishes a full

duplex communication link with the operation center through cellular network and public
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switched telephone network (PSTN). It transmits the generated signal to the operation

center through the uplink channel. The transceiver in the operation center detects the

signal and records the waveform, and transmits another signal through the downlink to the

UAS. The UAS records the received signal on the downlink for processing and analysis.

Figure 42: Block diagram of the full duplex UAS communication system.

The ECU transmits a continuous wave (CW) signal of 1500 Hz to the receiver in the

operation center through the uplink so that the receiver can measure the power of the

received for the uplink. The output signal of the ECU is fed into a cellular transmitter. The

output signal of the cellular transmitter is transmitted through a cellular network and PSTN

to the operation center. The channel between the UAS and the cellular base station is a

multi-path fading channel. The uplink channel impulse response can be modeled as [30]

c(t; τ) =
L∑

k=1

αk(t)δ(t− τk) (7.1)
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where αk(t) is the attenuation factor of the kth path and τk is the time delay of the kth path.

The transmitted signal by the UAS radio is s1(t). The received signal r1(t) by the base

station receiver can be written as

r1(t) =
L∑

k=1

αk(t)s1(t− τk) + n(t) (7.2)

where n(t) is additive white Gaussian noise (AWGN). The base station sends the base-

band signal through the PSTN network to the transceiver in the operation center. The

receiver in the operation center receives the baseband analog signal r(t), performs sam-

pling at 8 kHz sampling rate, and records the signal at 16 bits per sample. The recorded

signal is analyzed to obtain fading statistics of the uplink channel.

For the downlink, the transmitter in the operation center sends a CW signal to the UAS

radio. The receiver in the UAS radio performs sampling and recording of the downlink

signal. The recorded signal is analyzed to obtain fading statistics of the downlink channel.

The communications between the UAS radio and transceiver in the operation center is full

duplex in real time.

Power control was a major task in designing cellular networks [29, 28]. Power con-

trol algorithms were implemented in all of 2G/3G/4G networks. A thorough literature

search did not find paper to analyze radio signal power distribution after power control

in 2G/3G/4G networks. In [67, 77], it was shown that large fading still exists after power

control in 4G LTE networks. Because the power control algorithms in 2G/3G cellular net-

works are not as strong as those in the 4G cellular network, it is expected that fading after

power control in 2G/3G cellular networks are worse than that in the 4G cellular network.
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Before accurate theoretical results become available, communication researchers and en-

gineers have to design a testbed to measure cellular radio signals in order to understand

fading statistics.

7.3 UAS Communication Testbed and Measurements

A testbed was designed and built to support full duplex real-time UAS communications

using cellular channels. It was applied to measure the fading characteristics of cellular

channels for UAS communication. A communication terminal was installed in a UAS con-

sisting of a radio board and a cellular transceiver and a GPS receiver. Figure 43 shows

the UAS flying during the experiment with the radio board and the cellular transceiver and

the GPS receiver inside the pink box. One cellular antenna was placed at the bottom of

the UAS pointing toward the ground. One GPS antenna was installed on top of the UAS

looking into the sky. A transceiver located in the operation center supported full duplex

communications. Time and altitude were obtained through the GPS receiver and recorded

during flight.

The radio board contained a Freescale i.MX 6 automotive grade board as the ECU

and a u-Blox GSM module LEON-G200 and a GPS module LEA-6S. For the uplink, the

Freescale i.MX 6 processor generated CW signal s(t) and fed it into the GSM module.

The radio signal was transmitted through the GSM antenna and sent to a base station.

The signal received by the base station was transmitted through the PSTN network to a

telephone recording box located inside the operation center. The signal received by the

receiver at the operation center was sampled and recorded by a sound card inside the op-

eration center at 8 kHz sampling frequency and 16 bits per sample. The digital signal was

stored on a server for processing. For the downlink, the transmitter inside the operation
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Figure 43: The UAS flying during the experiment with the radio transceiver and the GPS
receiver inside the pink box. The radio antenna pointed down.

center generated a CW signal. The signal was received by the Freescale i.MX 6 proces-

sor and recorded on an SD card for processing. Software and drivers were designed and

developed in C programming language to run each experiment automatically.

7.3.1 Test Cases

Experiments have been carried out in different environments. The following test cases

were studied.

Case 1 was conducted at Wayne State University parking structure 2. The experiment

was carried out from 11:00 a.m. to 1:00 p.m. on December 8, 2017. There was NW wind

at 16 mph. The UAS took off from the top of the parking structure which is not surrounded

by tall buildings. The UAS hovered for 15 minutes at each of the following altitudes: 50
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Figure 44: The UAS flying above the Wayne State University parking structure.

feet, 100 feet, 200 feet, 300 feet and 400 feet AGL. There was a line-of-sight propagation

path between the radio antenna and the cellular base station. Figure 44 shows the UAS

was flying above the parking lot.

Figure 45: The UAS flying in the front yard of a house.
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Case 2 was conducted in the front yard of a house. The experiment was carried out

from 9:30 a.m. to 11:00 a.m. on December 9, 2017. The UAS took off from the front yard

of the house located at Bagley street in Detroit. The surrounding structures were two-story

homes and are not overshadowed by tall buildings. The UAS hovered for 15 minutes at

each of the following altitudes: 50 feet, 100 feet, 200 feet, 300 feet and 400 feet above

the front yard. Figure 45 shows the UAS was flying in the front yard of the hous.

Case 3 was conducted in the parking lot of Whole Foods Market on Mack Avenue in

Detroit. The experiment was carried out from 3:30 p.m. to 5:30 p.m. on December 9,

2017. The UAS took off from the sidewalk close to the market. The UAS hovered for 15

minutes at each of the following altitudes: 50 feet, 100 feet, 200 feet, 300 feet and 400

feet above the Whole Foods Market. Figure 43 shows the UAS was flying in the parking

lot of Whole Foods Market.

Figure 46: The UAS flying above a CVS pharmacy store.

Case 4 was conducted at a CVS pharmacy store on Warren Avenue in Detroit. The
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experiment was carried out from 2:00 p.m. to 3:00 p.m. on December 16, 2017. The UAS

took off from the sidewalk of the store. The UAS hovered for 15 minutes at each of the

following altitudes: 50 feet, 300 feet and 400 feet above the store. Figure 46 shows the

UAS was flying above a CVS pharmacy store.

Case 5was conducted to test the UAS flying at 300 feet and 400 feet over the downtown

Detroit area. There are many 20-30 story buildings in the downtown Detroit area. The

experiment was carried out from 2:30 p.m. to 3:30 p.m. on December 8, 2017. The UAS

took off from the top of a 3-story parking lot between Cass Avenue and Woodward Avenue

in Detroit. The UAS flew about 15 minutes at each of the following altitudes: 300 feet and

400 feet over downtown Detroit.

Figure 47: The procedure to measure CW signal strength.

Case 6 was conducted to test the UAS flying at 300 feet and 400 feet over the I-94

freeway. The experiment was carried out from 4:00 p.m to 5:30 p.m. on December 8,

2017. The UAS took off from the top of Wayne State University parking structure 2. The

UAS flew for 15 minutes at each of the following altitudes: 300 feet and 400 feet over the
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I-94 freeway. The UAS took off from the top of Wayne State University parking structure

2. The UAS flew for 15 minutes at each of the following altitudes: 300 feet and 400 feet

over the I-94 freeway.

7.3.2 Measurement Procedure

The procedure to measure the power of received signals for full-duplex real-time UAS

communications using cellular channels is shown in Figure 47. The amplifier gain was

set to 0 dB for the UAS radio and the operation center. The UAS radio dialed a call.

The operation center answered the incoming call. After the full-duplex voice call was

established, the UAS radio sent a 1500 Hz CW signal for 10 seconds. The receiver at

the operation center recorded the received signal at 8 kHz sampling rate and 16 bits per

sample for the uplink. Meanwhile, the transmitter in the operation center sent a CW signal

to the UAS through the downlink. The UAS radio saved the CW waveform into the SD

card on the radio board. The experiments repeated the procedure for 30 times at each

height for the six test cases. These data and waveforms were analyzed and discussed in

the next subsection.

7.4 Fading Statistics for Unmanned Aerial System

Finding fading statistics of cellular channels for UAS communications is necessary.

After the statistics are found, the communication system can be designed and evaluated

properly in detection, synchronization, modulation and coding [78, 79]. Link availability

and transmission delay can also be found with the fading statistics. This subsection finds

CDF of the received signal power and average fading duration for both the uplink and the

downlink in UAS communications using the cellular channel. The results are compared
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with a signal with Rayleigh fading.
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Figure 48: The uplink and downlink CDFs at 50 feet, 100 feet, 200 feet, 300 feet and 400
feet above the six test locations. Rayleigh distribution is plotted for comparison.
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The blue curves in Figure 48 show CDFs of the uplink signals received by the receiver

in the operation center for the six test locations. Rayleigh fading is plotted for comparison.

It can be seen that the uplink channel fading was less significant at a flight altitude of 50

feet AGL. Approximately 0.1% of the received CW signal fading was more than 10 dB

about the median and 1% of the fading exceeded 1 dB about the median.

Figure 48(a) shows the CDF of the received signal power when the UAS was flying

above the roof of Wayne State University Parking Structure 2 at 50 feet (15.24 m), 100

feet (30.48 m), 200 feet (60.96 m), 300 feet (91.44 m) and 400 feet (121.92 m) AGL. The

parking structure is a 6-floor building. For the uplink, at probability less or equal to 10−3,

the fading was -8 dB below the median of the receiver signal power at 50 feet AGL, or

-7.5 dB below the median at 100 feet AGL, or -19 dB below the median at 200 feet AGL,

or -17.5 dB below the median at 300 feet AGL, or -21 dB below the median at 400 feet

AGL. The uplink fading became -10 dB worse as the UAS elevation increased from 50

feet AGL to 200 feet AGL. This might be because the cellular base station antenna looks

down at the ground, and any elevation higher than 200 feet AGL would make the UAS

loose line-of-sight to the base station. For the downlink, at probability less or equal to

10−3, the fading was -11 dB below the median of the receiver signal power at 50 feet AGL,

or -12.5 dB below the median at 100 feet AGL, or -10.8 dB below the median at 200 feet

AGL, or -14 dB below the median at 300 feet AGL, or -13.5 dB below the median at 400

feet AGL. At 50 feet AGL, at probability less or equal to 10−3, the fading in the downlink

was -3 dB worse than the fading in the uplink. At any elevation, the fading in the downlink

was worse than that in the uplink. The downlink fading at 300 feet AGL was close to the

fading at 400 feet AGL.
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Figure 48(b) shows the CDF of the received signal power when the UAS was flying

above the front yard of the house on Bagley street in Detroit at 50 feet (15.24 m), 100 feet

(30.48 m), 200 feet (60.96 m), 300 feet (91.44 m) and 400 feet (121.92 m) AGL. For the

uplink, at probability less or equal to 10−3, the fading was about -10 dB below the median of

the receiver signal power at 50 feet AGL or 100 feet AGL, or -12.5 dB below the median at

200 feet AGL, or -19.5 dB below the median at 300 feet AGL, or -20 dB below the median

at 400 feet AGL. The uplink fading became -7 dB worse as the UAS elevation increased

from 200 feet AGL to 300 feet AGL. For the downlink, at probability less or equal to 10−3,

the fading was -11.5 dB below the median of the receiver signal power at 50 feet AGL, or

-13 dB below the median at 100 feet AGL, or -14 dB below the median at 200 feet AGL, or

-15 dB below the median at 300 feet AGL, or -16 dB below the median at 400 feet AGL.

At 50 feet AGL, at probability less or equal to 10−3, the fading in the downlink was -1.5 dB

worse than the fading in the uplink. The fading at 300 feet AGL was close to the fading at

400 feet AGL.

Figure 48(c) shows the CDF of the received signal power when the UAS was flying

above the parking lot of the Whole Foods Market on Mack Avenue in Detroit at 50 feet

(15.24 m), 100 feet (30.48 m), 200 feet (60.96 m), 300 feet (91.44 m) and 400 feet (121.92

m) AGL. For the uplink, at probability less or equal to 10−3, the fading was about -10.5

dB below the median of the receiver signal power at 50 feet AGL, or -12.5 dB at 100 feet

AGL, or -13 dB below the median at 200 feet AGL, or -19.5 dB below the median at 300

feet AGL, or -20.5 dB below the median at 400 feet AGL. The uplink fading became -11 dB

worse as the UAS elevation increased from 50 feet AGL to 100 feet AGL. The uplink fading

became worse as the UAS elevation increased. For the downlink, at probability less or
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equal to 10−3, the fading was -11 dB below the median of the receiver signal power at 50

feet AGL, or -12 dB below the median at 100 feet AGL, or -14.5 dB below the median at

200 feet AGL, or -14.5 dB below the median at 300 feet AGL, or -16 dB below the median

at 400 feet AGL. At 50 feet AGL, at probability less or equal to 10−3, the fading in the

downlink was -0.5 dB worse than the fading in the uplink.

Figure 48(d) shows the CDF of the received signal power when the UAS was flying

above the parking lot of the CVS pharmacy store on Warren Avenue in Detroit at 50 feet

(15.24 m), 300 feet (91.44 m) and 400 feet (121.92 m) AGL. For the uplink, at probability

less or equal to 10−3, the fading was about -9 dB below the median of the receiver signal

power at 50 feet AGL, or -11 dB below the median at 300 feet AGL, or -18 dB below the

median at 400 feet AGL. The uplink fading became -7 dB worse as the UAS elevation

increased from 300 feet AGL to 400 feet AGL. For the downlink, at probability less or

equal to 10−3, the fading was -8 dB below the median of the receiver signal power at 50

feet AGL, or -14 dB below the median at 300 feet AGL, or -15 dB below the median at 400

feet AGL.

Figure 48(e) shows the CDF of the received signal power when the UAS was flying in

downtown Detroit up to 400 feet AGL. The area was crowded with many buildings between

20 to 30 stories. For the uplink, at probability less or equal to 10−3, the fading was about

-16 dB below the median at 300 feet AGL, or -15 dB below the median at 400 feet AGL.

For the downlink, at probability less or equal to 10−3, the fading was -14 dB below the

median at 300 feet AGL, or -15 dB below the median at 400 feet AGL.

Figure 48(f) shows the CDF of the received signal power when the UAS was flying

above the I-94 freeway up to 400 feet AGL. For the uplink, at probability less or equal to
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10−3, the fading was about -12 dB below the median at 300 feet AGL, or -15 dB below the

median at 400 feet AGL. For the downlink, at probability less or equal to 10−3, the fading

was -12 dB below the median at 300 feet AGL, or -13.5 dB below the median at 400 feet

AGL.

Figure 48(a) shows that about 0.1% of the received signal fading was more than 8 dB,

and 1% of the fading exceeded 1.2 dB. Figure 48(a), Figure 48(b), and Figure 48(c) show

that about 0.1% of the signal fading was more than 20 dB at flight altitudes above 300 feet.

Figure 48(e) shows that about 0.1% of the signal fading was more than 15 dB at 300 feet

and 400 feet when the UAS flew over the urban area. Figure 48(f) shows that the fading

impact was the least at the flight altitude of 300 feet among the six test environments.

Only about 0.1% of the signal fading was more than 6 dB. Observing Figure 48(a), Figure

48(b), Figure 48(c) and Figure 48(d), one can conclude that the uplink signal quality was

better at 50 feet or 100 feet AGL than the signal quality at 300 or 400 AGL.

The red curves in Figure 48 show CDFs of the downlink signals received by the UAS

for the six test cases. As it can be seen from the Figure 48(a), Figure 48(b), Figure 48(c),

and Figure 48(d), about 0.1% of the received downlink signal was faded 11 dB, 1% of the

received signals was faded more than 5 dB when the UAS radio was at 50 feet above the

test site. Similarly, Figure 48(a) shows that about 0.1% of the received power was faded

13 dB when the UAS flew at 300 feet above the university parking lot. Figure 48(b) shows

that about 0.1% of the received power was attenuated 15 dB when the UAS flew at 300

feet AGL in the front yard of the house. Figure 48(c) and Figure 48(d) show that about

0.1% of the received signal faded more than 14 dB, when the UAS was hovering above

the market and the pharmacy. Figure 48(e) shows that about 0.1% of the received signal
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faded more than 13 dB at 300 feet and 400 feet above the urban area. Figure 48(f) shows

that the received signal had minimum fading impact flying over the freeway and 0.1% of

the received signal was faded only about 3.8 dB.

The fading impact is less severe when the flight height of the UAS is between 50 feet

and 200 feet AGL. Flying UAS at 300 feet above the freeway gives the least fading. This

may be a good choice for a UAS to deliver parcels in long distance. UAVs can choose to

fly 50 to 200 feet above the ground when it is close to the destination.

For the uplink the worst fading was -21 dB at probability less or equal to 10−3 which

occurred at 400 AGL on the rooftop of the Wayne State University Parking Structure 2.

For the downlink the worst fading was -16 dB at probability less or equal to 10−3 which

occurred at 400 AGL above the front yard of the house in Detroit and the parking lot of the

Whole Foods Market in Detroit. For both the uplink and the downlink, the fading became

worse as the UAS elevation increased. In all of the test cases, the fading was apparently

less severe than Rayleigh fading. Therefore, the fading of UAS communications using the

GSM network is huge and needs to be handled.

Level crossing rate is the number of fades for a given time interval. It shows how often

the fades occur for a given threshold. The blue curves in Figure 49 show LCRs of the uplink

for the six test locations. The red curves in Figure 49 show LCRs of the downlink signals

received by the UAS for the six test cases. It can be seen that the downlink LCRs were

larger than the uplink LCRs. Figure 49(a) shows the maximum downlink LCR occurred at

400 feet above the parking lot. The LCR was 55 fades per second when the fade fell below

-8 dB. The maximum uplink LCR occurred at 300 feet above the parking lot. The LCR was

10 fades per second when the fade fell below -7 dB. Figure 49(b) shows the maximum
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Figure 49: The uplink and downlink LCRs at 50 feet, 100 feet, 200 feet, 300 feet and 400
feet above the six test locations.
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downlink LCR occurred at 400 feet above the front yard of the house. The LCR was 103

fades per second when the fade fell below -5 dB. The maximum uplink LCR occurred at

400 feet above the front yard of the house. The LCR was 2 fades per second when the

fade fell below -7.5 dB. Figure 49(f) shows the downlink LCR was 11 fades per second

When the fade fell below -10 dB at the height of 400 feet above the freeway. The uplink

LCR was 3 fades per second when the fade fell below -10 dB. Figure 49(c), Figure 49(d),

Figure 49(e), and Figure 49(f) also show the maximum downlink and uplink LCR occurred

at 400 feet above the test locations.

The blue curves in Figure 50 show AFDs of the uplink signals received by the receiver

inside the operation center above the six test locations. Figure 50(a) shows that the uplink

AFD was 3 ms at 50 feet above the parking structure when the received signal level was

15 dB below the RMS value. If the data rate is 2000 bit/s, three bits data would be lost.

When the UAS flight altitude was 200 feet, the uplink AFD could reach 20 ms. There would

be more data bits loss when flying at 200 feet or higher. Figure 50(b) shows that the AFD

was 2 ms at 50 feet above the house front yard when the received signal level was 15 dB

below the RMS value. The uplink AFD was 8 ms when the flight altitude was 200 feet.

Figure 50(c) shows that the AFD was 7 ms at 50 feet above the market and the AFD was

about 10 ms when the flight altitude was 100 feet. The uplink AFD was about 50 ms when

the flight altitude was 200 feet. Figure 50(d) shows the uplink AFD was 4 ms at 50 feet

and 100 feet above the CVS pharmacy when the received signal level was 15 dB below

the RMS. At 200 feet, the AFD was 28ms. Therefore, the uplink AFD was minimum at

the university parking structure, the residential area, the market, and the CVS pharmacy

when the flight altitude was 50 feet to 100 feet above the ground. Figure 50(e) shows the
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Figure 50: The uplink and downlink AFDs at 50 feet, 100 feet, 200 feet, 300 feet and 400
feet above the six test locations.
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uplink AFD was about 10 ms at 300 feet above the urban area when the received signal

level was 15 dB below the RMS. Figure 50(f) shows the uplink AFD was about 2 ms when

the UAS flew at 300 feet above the freeway.

The red curves in Figure 50 show AFDs of the downlink signals received by the UAS

above the six test locations. Observing Figure 50(a), Figure 50(b) and Figure 50(c), one

can conclude that the AFD was 2 ms at 50 feet, 100 feet, and 200 feet when the received

signal level was 15 dB below the RMS level. Figure 50(d) shows that the downlink AFD

was 2 ms at 50 feet or 300 feet. Figure 50(e) and Figure 50(f) show the downlink AFD was

also 2 ms at 300 feet and 400 feet above the ground when the received signal level was

15 dB below the RMS value. In summary, the AFD of the downlink was smaller than the

AFD of the uplink at the same flight altitude. The AFD was smaller when the flight altitude

was between 50 feet and 100 feet above the university, the residential area, the market,

and the CVS pharmacy. When flying over the freeway, 300 feet AGL is a good choice.

In all of the test cases, the downlink fading was smaller than the uplink fading. There-

fore, UAS ID tracking using the uplink is more difficult to achieve than command and

control using the downlink.

7.5 Conclusion

A testbed is designed and developed to support full duplex UAS communications using

cellular networks. The testbed is applied to measure signal power for uplink and downlink.

A novel method is proposed to measure the power of cellular networks and obtain fading

statistics for full-duplex real-time UAS communications. UAS test flights are realized and

data is collected for six test sites. Cumulative distribution function and average fading

duration are obtained for six test sites. The statistics of the cellular network can be directly
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applied to design full duplex real time UAS communication systems and evaluate system

performance including detection, synchronization, modulation and coding.

For the uplink, the worst fading was -21 dB at probability less or equal to 10−3 which

occurred at 400 AGL on the rooftop of the Wayne State University Parking Structure 2.

For the downlink, the worst fading was -16 dB at probability less or equal to 10−3 which

occurred at 400 AGL above the front yard of the house in Detroit and the parking lot of

the Whole Foods Market in Detroit. This means that real-time UAS ID tracking is more

difficult to achieve using the uplink than command and control using the downlink. For

both the uplink channel and the downlink channel, the fading became worse as the UAS

elevation increased. In all of the test cases, the fading was less severe than Rayleigh

fading. Therefore, the fading of UAS communications using GSM network is vast and

needs to be handled.
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CHAPTER 8 CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this dissertation, a testbed is designed and developed to obtain the fading statistics

of the in-band channel for the 3GPP emergency call system and unmanned aerial systems.

Experiments are performed in different environments to obtain the CDF, LCR, and AFD of

the received signal. It is found that with probability less or equal to 0.1%, the fading is -19

dB for the CW signal at 500 Hz and -9.5 dB for the CW signal at 2000 Hz, respectively. It

is recommended to move the 500 Hz CW signal and the 800 Hz CW signal for detection

and synchronization in the 3GPP TS 26.267 standard to around 2000 Hz for minimum

fading. This will give 9.5 dB improvement in signal detection and synchronization. The

longest fade duration observed is 540 ms. The 64 ms synchronization signal in the current

standard is insufficient to handle the fading. It is shown that fading is minimized in the

frequency range [1000, 2500] Hz for the 3GPP TS 26.267 system.

The experiment results have shown that severe fading still exists in the voice channel

of the GSM network with power control. The fading is one of the reasons that explain the

road test results of the HeURO project. The fading increases the MSD transmission delay

and reduces the success rate of the MSD transmission. In the future revision of the 3GPP

TS 26.267 standard, the statistics obtained in this dissertation can be employed to design

a better system including detection, synchronization, modulation, and coding. The results

can be employed to minimize the MSD transmission delay in emergency call systems.

Furthermore, the fading results are used to calculate the BER performance for the in-

band modem. Timing estimation performance and synchronization detection probability

are obtained by transmitting the synchronization preamble through various adaptive multi-
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rate vocoders and the additive white Gaussian noise channel. The results of the fading

statistics, synchronization, and BER can be directly applied to design real-time commu-

nication systems and evaluate system performance including detection, synchronization,

modulation and coding.

The testbed is also applied for full-duplex real-time unmanned aerial system commu-

nications using cellular networks. The testbed is applied to measure the power of signals

received by the UAS in flight for the downlink and by the receiver in the operation cen-

ter for the uplink, respectively. The method is proposed to measure the power of cellular

networks and obtain fading statistics for full duplex real-time UAS communications. Field

experiments are carried out by flying a UAS above a university campus, the front yard of

a house, the parking lot of Whole Foods Market, the parking lot of CVS pharmacy, down-

town Detroit and I-94 freeway. Results of flying UAS in snow is reported for the first time.

Received signals are recorded for both the uplink and the downlink in real time. UAS test

flights are realized and data is collected for six test sites. Cumulative distribution function

and level cross rate and average fading duration are obtained for all of the test cases. For

the uplink the worst fading was -21 dB at probability less or equal to 10−3 which occurred at

400 AGL on the rooftop of the Wayne State University Parking Structure 2. For the down-

link, the worst fading was -16 dB at probability less or equal to 10−3 which occurred at 400

AGL above the front yard of the house in Detroit and the parking lot of the Whole Foods

Market in Detroit. This means that real-time UAS ID tracking is more difficult to achieve

using the uplink than command and control using the downlink. For both the uplink and

the downlink, the fading became worse as the UAS elevation increased. In all of the test

cases, the fading was less severe than Rayleigh fading.



www.manaraa.com

98

8.2 Future Work

The MSD transmission success rate of the eCall system has a great potential to be

improved and the delay of the MSD transmission can be reduced, based on the HeURO

test results. Future research efforts should focus on such challenges. When the channel

fading is severe or the channel quality is bad, the PSAP may miss the synchronization

signal and hence the MSD data is not detectable. This results in low transmission success

rate and increases transmission time. In future work, the PSAP should measure the fading

and signal strength of the received signal. When the fading exceeds a specific threshold,

a feedback signal should be sent to the IVS. The IVS switches the robust transmission

mode to implement adaptive modulation, which can improve the success rate and real-

time performance.
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The Third Generation Partnership Project (3GPP) selected an in-band modem to 

transmit emergency data over cellular voice channel for the European Union emergency 

call (eCall) system. However, the road test results presented by the Harmonized eCall 

European Pilot project showed that the success rate of data delivery was only 71%, 

indicating that there is significant potential to improve its performance. 

In this dissertation, a testbed is designed for the eCall system that satisfies the 

3GPP TS 26.267/268/269 standards. A method is proposed to measure the power of 

the received signal that passes through the in-band channel. Experiments are 

performed with the in-vehicle system testbed in a laboratory or a car travelling in city, 

suburb, country- side, or freeway. Fading statistics of the received signal after power 

control are found and discussed, together with cumulative distribution function (CDF), 

level crossing rate (LCR), and average fade duration (AFD). It is found that with 

probability less than or equal to 0.1%, fading and attenuation can vary from -19 dB for 

the continuous wave (CW) signal at 500 Hz to -9.5 dB for the CW signal at 2000 Hz. 

This dissertation recommends moving the CW signals at 500 Hz and 800 Hz for 
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detection and synchronization in the 3GPP standard to 1500 Hz and 2000 Hz, 

respectively. This will give 9.5 dB improvement in detection and synchronization. 

The fading results are used to calculate the bit error rate (BER) performance for 

the eCall in-band modem. Synchronization detection probability are obtained by 

transmitting the synchronization preamble through various adaptive multi-rate vocoders 

and an additive white Gaussian noise channel. 

The testbed and proposed method are also used to measure the power of signals 

received by an unmanned aerial systems (UAS) and by the receiver in the operation 

center, respectively. Field experiments are carried out by flying the UAS above different 

locations. Statistics, including CDF, LCR, and AFD, are calculated for the six test-sites. 

The results of the fading statistics, synchronization detection probability, and BER can 

be directly applied to design real-time communication systems, including detection, 

delay estimation, modulation and coding.
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